-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
union.rs
888 lines (801 loc) · 31.8 KB
/
union.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// Some of these functions reference the Postgres documentation
// or implementation to ensure compatibility and are subject to
// the Postgres license.
//! The Union operator combines multiple inputs with the same schema
use std::pin::Pin;
use std::task::{Context, Poll};
use std::{any::Any, sync::Arc};
use super::{
expressions::PhysicalSortExpr,
metrics::{ExecutionPlanMetricsSet, MetricsSet},
ColumnStatistics, DisplayAs, DisplayFormatType, ExecutionPlan, Partitioning,
RecordBatchStream, SendableRecordBatchStream, Statistics,
};
use crate::common::get_meet_of_orderings;
use crate::metrics::BaselineMetrics;
use crate::stream::ObservedStream;
use arrow::datatypes::{Field, Schema, SchemaRef};
use arrow::record_batch::RecordBatch;
use datafusion_common::stats::Precision;
use datafusion_common::{exec_err, internal_err, DFSchemaRef, DataFusionError, Result};
use datafusion_execution::TaskContext;
use datafusion_physical_expr::EquivalenceProperties;
use futures::Stream;
use itertools::Itertools;
use log::{debug, trace, warn};
use tokio::macros::support::thread_rng_n;
/// `UnionExec`: `UNION ALL` execution plan.
///
/// `UnionExec` combines multiple inputs with the same schema by
/// concatenating the partitions. It does not mix or copy data within
/// or across partitions. Thus if the input partitions are sorted, the
/// output partitions of the union are also sorted.
///
/// For example, given a `UnionExec` of two inputs, with `N`
/// partitions, and `M` partitions, there will be `N+M` output
/// partitions. The first `N` output partitions are from Input 1
/// partitions, and then next `M` output partitions are from Input 2.
///
/// ```text
/// ▲ ▲ ▲ ▲
/// │ │ │ │
/// Output │ ... │ │ │
/// Partitions │0 │N-1 │ N │N+M-1
///(passes through ┌────┴───────┴───────────┴─────────┴───┐
/// the N+M input │ UnionExec │
/// partitions) │ │
/// └──────────────────────────────────────┘
/// ▲
/// │
/// │
/// Input ┌────────┬─────┴────┬──────────┐
/// Partitions │ ... │ │ ... │
/// 0 │ │ N-1 │ 0 │ M-1
/// ┌────┴────────┴───┐ ┌───┴──────────┴───┐
/// │ │ │ │
/// │ │ │ │
/// │ │ │ │
/// │ │ │ │
/// │ │ │ │
/// │ │ │ │
/// │Input 1 │ │Input 2 │
/// └─────────────────┘ └──────────────────┘
/// ```
#[derive(Debug)]
pub struct UnionExec {
/// Input execution plan
inputs: Vec<Arc<dyn ExecutionPlan>>,
/// Execution metrics
metrics: ExecutionPlanMetricsSet,
/// Schema of Union
schema: SchemaRef,
}
impl UnionExec {
/// Create a new UnionExec with specified schema.
/// The `schema` should always be a subset of the schema of `inputs`,
/// otherwise, an error will be returned.
pub fn try_new_with_schema(
inputs: Vec<Arc<dyn ExecutionPlan>>,
schema: DFSchemaRef,
) -> Result<Self> {
let mut exec = Self::new(inputs);
let exec_schema = exec.schema();
let fields = schema
.fields()
.iter()
.map(|dff| {
exec_schema
.field_with_name(dff.name())
.cloned()
.map_err(|_| {
DataFusionError::Internal(format!(
"Cannot find the field {:?} in child schema",
dff.name()
))
})
})
.collect::<Result<Vec<Field>>>()?;
let schema = Arc::new(Schema::new_with_metadata(
fields,
exec.schema().metadata().clone(),
));
exec.schema = schema;
Ok(exec)
}
/// Create a new UnionExec
pub fn new(inputs: Vec<Arc<dyn ExecutionPlan>>) -> Self {
let schema = union_schema(&inputs);
UnionExec {
inputs,
metrics: ExecutionPlanMetricsSet::new(),
schema,
}
}
/// Get inputs of the execution plan
pub fn inputs(&self) -> &Vec<Arc<dyn ExecutionPlan>> {
&self.inputs
}
}
impl DisplayAs for UnionExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(f, "UnionExec")
}
}
}
}
impl ExecutionPlan for UnionExec {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
/// Specifies whether this plan generates an infinite stream of records.
/// If the plan does not support pipelining, but its input(s) are
/// infinite, returns an error to indicate this.
fn unbounded_output(&self, children: &[bool]) -> Result<bool> {
Ok(children.iter().any(|x| *x))
}
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
self.inputs.clone()
}
/// Output of the union is the combination of all output partitions of the inputs
fn output_partitioning(&self) -> Partitioning {
// Output the combination of all output partitions of the inputs if the Union is not partition aware
let num_partitions = self
.inputs
.iter()
.map(|plan| plan.output_partitioning().partition_count())
.sum();
Partitioning::UnknownPartitioning(num_partitions)
}
fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> {
// The output ordering is the "meet" of its input orderings.
// The meet is the finest ordering that satisfied by all the input
// orderings, see https://en.wikipedia.org/wiki/Join_and_meet.
get_meet_of_orderings(&self.inputs)
}
fn maintains_input_order(&self) -> Vec<bool> {
// If the Union has an output ordering, it maintains at least one
// child's ordering (i.e. the meet).
// For instance, assume that the first child is SortExpr('a','b','c'),
// the second child is SortExpr('a','b') and the third child is
// SortExpr('a','b'). The output ordering would be SortExpr('a','b'),
// which is the "meet" of all input orderings. In this example, this
// function will return vec![false, true, true], indicating that we
// preserve the orderings for the 2nd and the 3rd children.
if let Some(output_ordering) = self.output_ordering() {
self.inputs()
.iter()
.map(|child| {
if let Some(child_ordering) = child.output_ordering() {
output_ordering.len() == child_ordering.len()
} else {
false
}
})
.collect()
} else {
vec![false; self.inputs().len()]
}
}
fn equivalence_properties(&self) -> EquivalenceProperties {
// TODO: In some cases, we should be able to preserve some equivalence
// classes and constants. Add support for such cases.
let children_eqs = self
.inputs
.iter()
.map(|child| child.equivalence_properties())
.collect::<Vec<_>>();
let mut result = EquivalenceProperties::new(self.schema());
// Use the ordering equivalence class of the first child as the seed:
let mut meets = children_eqs[0]
.oeq_class()
.iter()
.map(|item| item.to_vec())
.collect::<Vec<_>>();
// Iterate over all the children:
for child_eqs in &children_eqs[1..] {
// Compute meet orderings of the current meets and the new ordering
// equivalence class.
let mut idx = 0;
while idx < meets.len() {
// Find all the meets of `current_meet` with this child's orderings:
let valid_meets = child_eqs.oeq_class().iter().filter_map(|ordering| {
child_eqs.get_meet_ordering(ordering, &meets[idx])
});
// Use the longest of these meets as others are redundant:
if let Some(next_meet) = valid_meets.max_by_key(|m| m.len()) {
meets[idx] = next_meet;
idx += 1;
} else {
meets.swap_remove(idx);
}
}
}
// We know have all the valid orderings after union, remove redundant
// entries (implicitly) and return:
result.add_new_orderings(meets);
result
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::new(UnionExec::new(children)))
}
fn execute(
&self,
mut partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
trace!("Start UnionExec::execute for partition {} of context session_id {} and task_id {:?}", partition, context.session_id(), context.task_id());
let baseline_metrics = BaselineMetrics::new(&self.metrics, partition);
// record the tiny amount of work done in this function so
// elapsed_compute is reported as non zero
let elapsed_compute = baseline_metrics.elapsed_compute().clone();
let _timer = elapsed_compute.timer(); // record on drop
// find partition to execute
for input in self.inputs.iter() {
// Calculate whether partition belongs to the current partition
if partition < input.output_partitioning().partition_count() {
let stream = input.execute(partition, context)?;
debug!("Found a Union partition to execute");
return Ok(Box::pin(ObservedStream::new(stream, baseline_metrics)));
} else {
partition -= input.output_partitioning().partition_count();
}
}
warn!("Error in Union: Partition {} not found", partition);
exec_err!("Partition {partition} not found in Union")
}
fn metrics(&self) -> Option<MetricsSet> {
Some(self.metrics.clone_inner())
}
fn statistics(&self) -> Result<Statistics> {
let stats = self
.inputs
.iter()
.map(|stat| stat.statistics())
.collect::<Result<Vec<_>>>()?;
Ok(stats
.into_iter()
.reduce(stats_union)
.unwrap_or_else(|| Statistics::new_unknown(&self.schema())))
}
fn benefits_from_input_partitioning(&self) -> Vec<bool> {
vec![false; self.children().len()]
}
}
/// Combines multiple input streams by interleaving them.
///
/// This only works if all inputs have the same hash-partitioning.
///
/// # Data Flow
/// ```text
/// +---------+
/// | |---+
/// | Input 1 | |
/// | |-------------+
/// +---------+ | |
/// | | +---------+
/// +------------------>| |
/// +---------------->| Combine |-->
/// | +-------------->| |
/// | | | +---------+
/// +---------+ | | |
/// | |-----+ | |
/// | Input 2 | | |
/// | |---------------+
/// +---------+ | | |
/// | | | +---------+
/// | +-------->| |
/// | +------>| Combine |-->
/// | +---->| |
/// | | +---------+
/// +---------+ | |
/// | |-------+ |
/// | Input 3 | |
/// | |-----------------+
/// +---------+
/// ```
#[derive(Debug)]
pub struct InterleaveExec {
/// Input execution plan
inputs: Vec<Arc<dyn ExecutionPlan>>,
/// Execution metrics
metrics: ExecutionPlanMetricsSet,
/// Schema of Interleave
schema: SchemaRef,
}
impl InterleaveExec {
/// Create a new InterleaveExec
pub fn try_new(inputs: Vec<Arc<dyn ExecutionPlan>>) -> Result<Self> {
let schema = union_schema(&inputs);
if !can_interleave(&inputs) {
return internal_err!(
"Not all InterleaveExec children have a consistent hash partitioning"
);
}
Ok(InterleaveExec {
inputs,
metrics: ExecutionPlanMetricsSet::new(),
schema,
})
}
/// Get inputs of the execution plan
pub fn inputs(&self) -> &Vec<Arc<dyn ExecutionPlan>> {
&self.inputs
}
}
impl DisplayAs for InterleaveExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(f, "InterleaveExec")
}
}
}
}
impl ExecutionPlan for InterleaveExec {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
/// Specifies whether this plan generates an infinite stream of records.
/// If the plan does not support pipelining, but its input(s) are
/// infinite, returns an error to indicate this.
fn unbounded_output(&self, children: &[bool]) -> Result<bool> {
Ok(children.iter().any(|x| *x))
}
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
self.inputs.clone()
}
/// All inputs must have the same partitioning. The output partioning of InterleaveExec is the same as the inputs
/// (NOT combined). E.g. if there are 10 inputs where each is `Hash(3)`-partitioned, InterleaveExec is also
/// `Hash(3)`-partitioned.
fn output_partitioning(&self) -> Partitioning {
self.inputs[0].output_partitioning()
}
fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> {
None
}
fn maintains_input_order(&self) -> Vec<bool> {
vec![false; self.inputs().len()]
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::new(InterleaveExec::try_new(children)?))
}
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
trace!("Start InterleaveExec::execute for partition {} of context session_id {} and task_id {:?}", partition, context.session_id(), context.task_id());
let baseline_metrics = BaselineMetrics::new(&self.metrics, partition);
// record the tiny amount of work done in this function so
// elapsed_compute is reported as non zero
let elapsed_compute = baseline_metrics.elapsed_compute().clone();
let _timer = elapsed_compute.timer(); // record on drop
let mut input_stream_vec = vec![];
for input in self.inputs.iter() {
if partition < input.output_partitioning().partition_count() {
input_stream_vec.push(input.execute(partition, context.clone())?);
} else {
// Do not find a partition to execute
break;
}
}
if input_stream_vec.len() == self.inputs.len() {
let stream = Box::pin(CombinedRecordBatchStream::new(
self.schema(),
input_stream_vec,
));
return Ok(Box::pin(ObservedStream::new(stream, baseline_metrics)));
}
warn!("Error in InterleaveExec: Partition {} not found", partition);
exec_err!("Partition {partition} not found in InterleaveExec")
}
fn metrics(&self) -> Option<MetricsSet> {
Some(self.metrics.clone_inner())
}
fn statistics(&self) -> Result<Statistics> {
let stats = self
.inputs
.iter()
.map(|stat| stat.statistics())
.collect::<Result<Vec<_>>>()?;
Ok(stats
.into_iter()
.reduce(stats_union)
.unwrap_or_else(|| Statistics::new_unknown(&self.schema())))
}
fn benefits_from_input_partitioning(&self) -> Vec<bool> {
vec![false; self.children().len()]
}
}
/// If all the input partitions have the same Hash partition spec with the first_input_partition
/// The InterleaveExec is partition aware.
///
/// It might be too strict here in the case that the input partition specs are compatible but not exactly the same.
/// For example one input partition has the partition spec Hash('a','b','c') and
/// other has the partition spec Hash('a'), It is safe to derive the out partition with the spec Hash('a','b','c').
pub fn can_interleave(inputs: &[Arc<dyn ExecutionPlan>]) -> bool {
if inputs.is_empty() {
return false;
}
let first_input_partition = inputs[0].output_partitioning();
matches!(first_input_partition, Partitioning::Hash(_, _))
&& inputs
.iter()
.map(|plan| plan.output_partitioning())
.all(|partition| partition == first_input_partition)
}
fn union_schema(inputs: &[Arc<dyn ExecutionPlan>]) -> SchemaRef {
let fields: Vec<Field> = (0..inputs[0].schema().fields().len())
.map(|i| {
inputs
.iter()
.filter_map(|input| {
if input.schema().fields().len() > i {
Some(input.schema().field(i).clone())
} else {
None
}
})
.find_or_first(|f| f.is_nullable())
.unwrap()
})
.collect();
Arc::new(Schema::new_with_metadata(
fields,
inputs[0].schema().metadata().clone(),
))
}
/// CombinedRecordBatchStream can be used to combine a Vec of SendableRecordBatchStreams into one
struct CombinedRecordBatchStream {
/// Schema wrapped by Arc
schema: SchemaRef,
/// Stream entries
entries: Vec<SendableRecordBatchStream>,
}
impl CombinedRecordBatchStream {
/// Create an CombinedRecordBatchStream
pub fn new(schema: SchemaRef, entries: Vec<SendableRecordBatchStream>) -> Self {
Self { schema, entries }
}
}
impl RecordBatchStream for CombinedRecordBatchStream {
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
}
impl Stream for CombinedRecordBatchStream {
type Item = Result<RecordBatch>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
use Poll::*;
let start = thread_rng_n(self.entries.len() as u32) as usize;
let mut idx = start;
for _ in 0..self.entries.len() {
let stream = self.entries.get_mut(idx).unwrap();
match Pin::new(stream).poll_next(cx) {
Ready(Some(val)) => return Ready(Some(val)),
Ready(None) => {
// Remove the entry
self.entries.swap_remove(idx);
// Check if this was the last entry, if so the cursor needs
// to wrap
if idx == self.entries.len() {
idx = 0;
} else if idx < start && start <= self.entries.len() {
// The stream being swapped into the current index has
// already been polled, so skip it.
idx = idx.wrapping_add(1) % self.entries.len();
}
}
Pending => {
idx = idx.wrapping_add(1) % self.entries.len();
}
}
}
// If the map is empty, then the stream is complete.
if self.entries.is_empty() {
Ready(None)
} else {
Pending
}
}
}
fn col_stats_union(
mut left: ColumnStatistics,
right: ColumnStatistics,
) -> ColumnStatistics {
left.distinct_count = Precision::Absent;
left.min_value = left.min_value.min(&right.min_value);
left.max_value = left.max_value.max(&right.max_value);
left.null_count = left.null_count.add(&right.null_count);
left
}
fn stats_union(mut left: Statistics, right: Statistics) -> Statistics {
left.num_rows = left.num_rows.add(&right.num_rows);
left.total_byte_size = left.total_byte_size.add(&right.total_byte_size);
left.column_statistics = left
.column_statistics
.into_iter()
.zip(right.column_statistics)
.map(|(a, b)| col_stats_union(a, b))
.collect::<Vec<_>>();
left
}
#[cfg(test)]
mod tests {
use super::*;
use crate::collect;
use crate::memory::MemoryExec;
use crate::test;
use arrow::record_batch::RecordBatch;
use arrow_schema::{DataType, SortOptions};
use datafusion_common::ScalarValue;
use datafusion_physical_expr::expressions::col;
use datafusion_physical_expr::PhysicalExpr;
// Generate a schema which consists of 7 columns (a, b, c, d, e, f, g)
fn create_test_schema() -> Result<SchemaRef> {
let a = Field::new("a", DataType::Int32, true);
let b = Field::new("b", DataType::Int32, true);
let c = Field::new("c", DataType::Int32, true);
let d = Field::new("d", DataType::Int32, true);
let e = Field::new("e", DataType::Int32, true);
let f = Field::new("f", DataType::Int32, true);
let g = Field::new("g", DataType::Int32, true);
let schema = Arc::new(Schema::new(vec![a, b, c, d, e, f, g]));
Ok(schema)
}
// Convert each tuple to PhysicalSortExpr
fn convert_to_sort_exprs(
in_data: &[(&Arc<dyn PhysicalExpr>, SortOptions)],
) -> Vec<PhysicalSortExpr> {
in_data
.iter()
.map(|(expr, options)| PhysicalSortExpr {
expr: (*expr).clone(),
options: *options,
})
.collect::<Vec<_>>()
}
#[tokio::test]
async fn test_union_partitions() -> Result<()> {
let task_ctx = Arc::new(TaskContext::default());
// Create inputs with different partitioning
let csv = test::scan_partitioned(4);
let csv2 = test::scan_partitioned(5);
let union_exec = Arc::new(UnionExec::new(vec![csv, csv2]));
// Should have 9 partitions and 9 output batches
assert_eq!(union_exec.output_partitioning().partition_count(), 9);
let result: Vec<RecordBatch> = collect(union_exec, task_ctx).await?;
assert_eq!(result.len(), 9);
Ok(())
}
#[tokio::test]
async fn test_stats_union() {
let left = Statistics {
num_rows: Precision::Exact(5),
total_byte_size: Precision::Exact(23),
column_statistics: vec![
ColumnStatistics {
distinct_count: Precision::Exact(5),
max_value: Precision::Exact(ScalarValue::Int64(Some(21))),
min_value: Precision::Exact(ScalarValue::Int64(Some(-4))),
null_count: Precision::Exact(0),
},
ColumnStatistics {
distinct_count: Precision::Exact(1),
max_value: Precision::Exact(ScalarValue::Utf8(Some(String::from(
"x",
)))),
min_value: Precision::Exact(ScalarValue::Utf8(Some(String::from(
"a",
)))),
null_count: Precision::Exact(3),
},
ColumnStatistics {
distinct_count: Precision::Absent,
max_value: Precision::Exact(ScalarValue::Float32(Some(1.1))),
min_value: Precision::Exact(ScalarValue::Float32(Some(0.1))),
null_count: Precision::Absent,
},
],
};
let right = Statistics {
num_rows: Precision::Exact(7),
total_byte_size: Precision::Exact(29),
column_statistics: vec![
ColumnStatistics {
distinct_count: Precision::Exact(3),
max_value: Precision::Exact(ScalarValue::Int64(Some(34))),
min_value: Precision::Exact(ScalarValue::Int64(Some(1))),
null_count: Precision::Exact(1),
},
ColumnStatistics {
distinct_count: Precision::Absent,
max_value: Precision::Exact(ScalarValue::Utf8(Some(String::from(
"c",
)))),
min_value: Precision::Exact(ScalarValue::Utf8(Some(String::from(
"b",
)))),
null_count: Precision::Absent,
},
ColumnStatistics {
distinct_count: Precision::Absent,
max_value: Precision::Absent,
min_value: Precision::Absent,
null_count: Precision::Absent,
},
],
};
let result = stats_union(left, right);
let expected = Statistics {
num_rows: Precision::Exact(12),
total_byte_size: Precision::Exact(52),
column_statistics: vec![
ColumnStatistics {
distinct_count: Precision::Absent,
max_value: Precision::Exact(ScalarValue::Int64(Some(34))),
min_value: Precision::Exact(ScalarValue::Int64(Some(-4))),
null_count: Precision::Exact(1),
},
ColumnStatistics {
distinct_count: Precision::Absent,
max_value: Precision::Exact(ScalarValue::Utf8(Some(String::from(
"x",
)))),
min_value: Precision::Exact(ScalarValue::Utf8(Some(String::from(
"a",
)))),
null_count: Precision::Absent,
},
ColumnStatistics {
distinct_count: Precision::Absent,
max_value: Precision::Absent,
min_value: Precision::Absent,
null_count: Precision::Absent,
},
],
};
assert_eq!(result, expected);
}
#[tokio::test]
async fn test_union_equivalence_properties() -> Result<()> {
let schema = create_test_schema()?;
let col_a = &col("a", &schema)?;
let col_b = &col("b", &schema)?;
let col_c = &col("c", &schema)?;
let col_d = &col("d", &schema)?;
let col_e = &col("e", &schema)?;
let col_f = &col("f", &schema)?;
let options = SortOptions::default();
let test_cases = vec![
//-----------TEST CASE 1----------//
(
// First child orderings
vec![
// [a ASC, b ASC, f ASC]
vec![(col_a, options), (col_b, options), (col_f, options)],
],
// Second child orderings
vec![
// [a ASC, b ASC, c ASC]
vec![(col_a, options), (col_b, options), (col_c, options)],
// [a ASC, b ASC, f ASC]
vec![(col_a, options), (col_b, options), (col_f, options)],
],
// Union output orderings
vec![
// [a ASC, b ASC, f ASC]
vec![(col_a, options), (col_b, options), (col_f, options)],
],
),
//-----------TEST CASE 2----------//
(
// First child orderings
vec![
// [a ASC, b ASC, f ASC]
vec![(col_a, options), (col_b, options), (col_f, options)],
// d ASC
vec![(col_d, options)],
],
// Second child orderings
vec![
// [a ASC, b ASC, c ASC]
vec![(col_a, options), (col_b, options), (col_c, options)],
// [e ASC]
vec![(col_e, options)],
],
// Union output orderings
vec![
// [a ASC, b ASC]
vec![(col_a, options), (col_b, options)],
],
),
];
for (
test_idx,
(first_child_orderings, second_child_orderings, union_orderings),
) in test_cases.iter().enumerate()
{
let first_orderings = first_child_orderings
.iter()
.map(|ordering| convert_to_sort_exprs(ordering))
.collect::<Vec<_>>();
let second_orderings = second_child_orderings
.iter()
.map(|ordering| convert_to_sort_exprs(ordering))
.collect::<Vec<_>>();
let union_expected_orderings = union_orderings
.iter()
.map(|ordering| convert_to_sort_exprs(ordering))
.collect::<Vec<_>>();
let child1 = Arc::new(
MemoryExec::try_new(&[], schema.clone(), None)?
.with_sort_information(first_orderings),
);
let child2 = Arc::new(
MemoryExec::try_new(&[], schema.clone(), None)?
.with_sort_information(second_orderings),
);
let union = UnionExec::new(vec![child1, child2]);
let union_eq_properties = union.equivalence_properties();
let union_actual_orderings = union_eq_properties.oeq_class();
let err_msg = format!(
"Error in test id: {:?}, test case: {:?}",
test_idx, test_cases[test_idx]
);
assert_eq!(
union_actual_orderings.len(),
union_expected_orderings.len(),
"{}",
err_msg
);
for expected in &union_expected_orderings {
assert!(union_actual_orderings.contains(expected), "{}", err_msg);
}
}
Ok(())
}
}