forked from manjotms10/GTA-Domain-Adaptation
-
Notifications
You must be signed in to change notification settings - Fork 1
/
dual_gans.py
197 lines (147 loc) · 7.46 KB
/
dual_gans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import itertools
import numpy as np
import torch
from torch import nn, Tensor
from torch.autograd import Variable
from torchvision.utils import save_image
from utils import EpochTracker, weights_init_normal
from networks import DualGansDiscriminator, DualGansGenerator
class DualGANs:
def __init__(self, device, file_prefix, learning_rate=0.0005, alpha=0.9,
train=False, semi_supervised=False):
print("Starting Dual Gans with Train = {} and Semi Supervised = {}".format(train, semi_supervised))
if semi_supervised is True:
self.architecture = 'dual_gans_semi_'
else:
self.architecture = 'dual_gans_un_'
self.is_train = train
self.is_semi_supervised = semi_supervised
self.device = device
self.file_prefix = file_prefix
self.epoch_tracker = EpochTracker(file_prefix + self.architecture + "epoch.txt")
self.gen_a_file = file_prefix + self.architecture + 'generator_a.pth'
self.gen_b_file = file_prefix + self.architecture + 'generator_b.pth'
self.dis_a_file = file_prefix + self.architecture + 'discriminator_a.pth'
self.dis_b_file = file_prefix + self.architecture + 'discriminator_b.pth'
if self.epoch_tracker.file_exists or not self.is_train:
self.GenA = self.init_net(DualGansGenerator(), self.gen_a_file)
self.GenB = self.init_net(DualGansGenerator(), self.gen_b_file)
else:
self.GenA = self.init_net(DualGansGenerator())
self.GenB = self.init_net(DualGansGenerator())
self.real_A = self.real_B = self.fake_A = self.fake_B = self.new_A = self.new_B = None
if train:
if self.epoch_tracker.file_exists:
self.DisA = self.init_net(DualGansDiscriminator(), self.dis_a_file)
self.DisB = self.init_net(DualGansDiscriminator(), self.dis_b_file)
else:
self.DisA = self.init_net(DualGansDiscriminator())
self.DisB = self.init_net(DualGansDiscriminator())
# define loss functions
self.criterionGAN = nn.BCELoss()
self.criterionWasserstein = nn.L1Loss()
self.criterionSupervised = nn.L1Loss()
# initialize optimizers
self.optimizer_g = torch.optim.RMSprop(itertools.chain(self.GenA.parameters(), self.GenB.parameters()), learning_rate, alpha)
self.optimizer_d = torch.optim.RMSprop(itertools.chain(self.DisA.parameters(), self.DisB.parameters()), learning_rate, alpha)
self.optimizers = [self.optimizer_g, self.optimizer_d]
self.loss_disA = self.loss_disB = 0
self.loss_genA = self.loss_genB = 0
self.supervised_A = self.supervised_B = 0
self.loss_G = 0
else:
self.pixelLoss = nn.L1Loss()
self.test_A = self.test_B = 0
def set_input(self, real_A, real_B):
self.real_A = real_A.to(self.device)
self.real_B = real_B.to(self.device)
def forward(self):
self.fake_B = self.GenA(self.real_A).to(self.device)
self.new_A = self.GenB(self.fake_B).to(self.device)
self.fake_A = self.GenB(self.real_B).to(self.device)
self.new_B = self.GenA(self.fake_A).to(self.device)
def backward_d(self, netD, real, fake):
true = Variable(Tensor(np.ones((real.size(0), 1))), requires_grad=False).to(self.device)
false = Variable(Tensor(np.zeros((real.size(0), 1))), requires_grad=False).to(self.device)
predict_real = netD(real)
loss_d_real = self.criterionGAN(predict_real, true)
predict_fake = netD(fake.detach())
loss_d_fake = self.criterionGAN(predict_fake, false)
loss_d = (loss_d_real + loss_d_fake) * 0.5
loss_d.backward()
return loss_d
def backward_g(self):
valid = Variable(Tensor(np.ones((self.real_A.size(0), 1))), requires_grad=False).to(self.device)
self.loss_genA = self.criterionGAN(self.DisA(self.fake_B), valid)
self.loss_genB = self.criterionGAN(self.DisB(self.fake_A), valid)
# Forward cycle loss
self.loss_wasserstein_A = self.criterionWasserstein(self.new_A, self.real_A)
# Backward cycle loss
self.loss_wasserstein_B = self.criterionWasserstein(self.new_B, self.real_B)
if self.is_semi_supervised:
self.supervised_A = self.criterionSupervised(self.fake_B[:2,:,:,:], self.real_B[:2,:,:,:])
self.supervised_B = self.criterionSupervised(self.fake_A[:2,:,:,:], self.real_A[:2,:,:,:])
# combined loss
self.loss_G = (self.loss_genA + self.loss_genB + self.loss_wasserstein_A + self.loss_wasserstein_B)
if self.is_semi_supervised:
self.loss_G += self.supervised_A + self.supervised_B
self.loss_G.backward()
def train(self):
# forward
self.forward()
# GenA and GenB
self.set_requires_grad([self.DisA, self.DisB], False)
self.optimizer_g.zero_grad()
self.backward_g()
self.optimizer_g.step()
# DisA and DisB
self.set_requires_grad([self.DisA, self.DisB], True)
self.optimizer_d.zero_grad()
# backward Dis A
self.loss_disA = self.backward_d(self.DisA, self.real_B, self.fake_B)
# backward Dis B
self.loss_disB = self.backward_d(self.DisB, self.real_A, self.fake_A)
self.optimizer_d.step()
def test(self):
with torch.no_grad():
self.forward()
self.test_A = self.pixelLoss(self.fake_B, self.real_B)
self.test_B = self.pixelLoss(self.fake_A, self.real_A)
def save_progress(self, path, epoch, iteration, save_epoch=False):
path += self.architecture
img_sample = torch.cat((self.real_A.data, self.fake_A.data, self.real_B.data, self.fake_B.data), -2)
save_image(img_sample, path + "{}_{}.png".format(epoch, iteration), nrow=4, normalize=True)
nets = {self.GenA:self.gen_a_file,
self.GenB:self.gen_b_file,
self.DisA:self.dis_a_file,
self.DisB:self.dis_b_file}
for net, file in nets.items():
if save_epoch:
file = "{}_{}".format(file, epoch)
if torch.cuda.is_available():
torch.save(net.module.state_dict(), file)
net.to(self.device)
else:
torch.save(net.cpu().state_dict(), file)
self.epoch_tracker.write(epoch, iteration)
def save_image(self, path, name):
save_image(self.real_A.data, path + "{}_fakeA.png".format(name), normalize=True)
save_image(self.real_B.data, path + "{}_fakeB.png".format(name), normalize=True)
@staticmethod
def set_requires_grad(nets, requires_grad=False):
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
@staticmethod
def init_net(net, file=None):
gpu_ids = list(range(torch.cuda.device_count()))
if file is not None:
net.load_state_dict(torch.load(file))
else:
net.apply(weights_init_normal)
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
net.to(gpu_ids[0])
net = torch.nn.DataParallel(net, gpu_ids)
return net