-
Notifications
You must be signed in to change notification settings - Fork 2
/
gaussian_elimination.h
160 lines (140 loc) · 4.5 KB
/
gaussian_elimination.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
// -*- c++ -*-
// Copyright (C) 2008,2009 Ethan Eade, Tom Drummond ([email protected])
// and Ed Rosten ([email protected])
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND OTHER CONTRIBUTORS ``AS IS''
//AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR OTHER CONTRIBUTORS BE
//LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
#ifndef GAUSSIAN_ELIMINATION_H
#define GAUSSIAN_ELIMINATION_H
#include <utility>
#include <cmath>
#include <TooN/TooN.h>
namespace TooN {
///@ingroup gEquations
///Return the solution for \f$Ax = b\f$, given \f$A\f$ and \f$b\f$
///@param A \f$A\f$
///@param b \f$b\f$
template<int N, typename Precision>
inline Vector<N, Precision> gaussian_elimination (Matrix<N,N,Precision> A, Vector<N, Precision> b) {
using std::swap;
using std::abs;
int size=b.size();
for (int i=0; i<size; ++i) {
int argmax = i;
Precision maxval = abs(A[i][i]);
for (int ii=i+1; ii<size; ++ii) {
double v = abs(A[ii][i]);
if (v > maxval) {
maxval = v;
argmax = ii;
}
}
Precision pivot = A[argmax][i];
//assert(abs(pivot) > 1e-16);
Precision inv_pivot = static_cast<Precision>(1)/pivot;
if (argmax != i) {
for (int j=i; j<size; ++j)
swap(A[i][j], A[argmax][j]);
swap(b[i], b[argmax]);
}
//A[i][i] = 1;
for (int j=i+1; j<size; ++j)
A[i][j] *= inv_pivot;
b[i] *= inv_pivot;
for (int u=i+1; u<size; ++u) {
double factor = A[u][i];
//A[u][i] = 0;
for (int j=i+1; j<size; ++j)
A[u][j] -= factor * A[i][j];
b[u] -= factor * b[i];
}
}
Vector<N,Precision> x(size);
for (int i=size-1; i>=0; --i) {
x[i] = b[i];
for (int j=i+1; j<size; ++j)
x[i] -= A[i][j] * x[j];
}
return x;
}
namespace Internal
{
template<int i, int j, int k> struct Size3
{
static const int s = !IsStatic<i>::is?i: (!IsStatic<j>::is?j:k);
};
};
///@ingroup gEquations
///Return the solution for \f$Ax = b\f$, given \f$A\f$ and \f$b\f$
///@param A \f$A\f$
///@param b \f$b\f$
template<int R1, int C1, int R2, int C2, typename Precision>
inline Matrix<Internal::Size3<R1, C1, R2>::s, C2, Precision> gaussian_elimination (Matrix<R1,C1,Precision> A, Matrix<R2, C2, Precision> b) {
using std::swap;
using std::abs;
SizeMismatch<R1, C1>::test(A.num_rows(), A.num_cols());
SizeMismatch<R1, R2>::test(A.num_rows(), b.num_rows());
int size=A.num_rows();
for (int i=0; i<size; ++i) {
int argmax = i;
Precision maxval = abs(A[i][i]);
for (int ii=i+1; ii<size; ++ii) {
Precision v = abs(A[ii][i]);
if (v > maxval) {
maxval = v;
argmax = ii;
}
}
Precision pivot = A[argmax][i];
//assert(abs(pivot) > 1e-16);
Precision inv_pivot = static_cast<Precision>(1)/pivot;
if (argmax != i) {
for (int j=i; j<size; ++j)
swap(A[i][j], A[argmax][j]);
for(int j=0; j < b.num_cols(); j++)
swap(b[i][j], b[argmax][j]);
}
//A[i][i] = 1;
for (int j=i+1; j<size; ++j)
A[i][j] *= inv_pivot;
b[i] *= inv_pivot;
for (int u=i+1; u<size; ++u) {
Precision factor = A[u][i];
//A[u][i] = 0;
for (int j=i+1; j<size; ++j)
A[u][j] -= factor * A[i][j];
b[u] -= factor * b[i];
}
}
Matrix<Internal::Size3<R1, C1, R2>::s,C2,Precision> x(b.num_rows(), b.num_cols());
for (int i=size-1; i>=0; --i) {
for(int k=0; k <b.num_cols(); k++)
{
x[i][k] = b[i][k];
for (int j=i+1; j<size; ++j)
x[i][k] -= A[i][j] * x[j][k];
}
}
return x;
}
}
#endif