-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathD2.cpp
153 lines (119 loc) · 3.81 KB
/
D2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include <bits/stdc++.h>
using namespace std;
#define nl '\n'
vector<int> smallest_factor;
vector<bool> prime;
vector<int> primes;
void sieve(int maximum) {
maximum = max(maximum, 1);
smallest_factor.assign(maximum + 1, 0);
prime.assign(maximum + 1, true);
prime[0] = prime[1] = false;
primes = {};
for (int p = 2; p <= maximum; p++)
if (prime[p]) {
smallest_factor[p] = p;
primes.push_back(p);
for (int64_t i = int64_t(p) * p; i <= maximum; i += p)
if (prime[i]) {
prime[i] = false;
smallest_factor[i] = p;
}
}
}
// Prime factorizes n in worst case O(sqrt n / log n). Requires having run `sieve` up to at least sqrt(n).
// If we've run `sieve` up to at least n, takes O(log n) time.
vector<pair<int64_t, int>> prime_factorize(int64_t n) {
int64_t sieve_max = int64_t(smallest_factor.size()) - 1;
assert(1 <= n && n <= sieve_max * sieve_max);
vector<pair<int64_t, int>> result;
if (n <= sieve_max) {
while (n != 1) {
int64_t p = smallest_factor[n];
int exponent = 0;
do {
n /= p;
exponent++;
} while (n % p == 0);
result.emplace_back(p, exponent);
}
return result;
}
for (int64_t p : primes) {
if (p * p > n)
break;
if (n % p == 0) {
result.emplace_back(p, 0);
do {
n /= p;
result.back().second++;
} while (n % p == 0);
}
}
if (n > 1)
result.emplace_back(n, 1);
return result;
}
vector<int64_t> generate_factors(const vector<pair<int64_t, int>> &prime_factors, bool sorted = false) {
// See http://oeis.org/A066150 and http://oeis.org/A036451 for upper bounds on number of factors.
static vector<int64_t> buffer;
int product = 1;
for (auto &pf : prime_factors)
product *= pf.second + 1;
vector<int64_t> factors = {1};
factors.reserve(product);
if (sorted)
buffer.resize(product);
for (auto &pf : prime_factors) {
int64_t p = pf.first;
int exponent = pf.second;
int before_size = int(factors.size());
for (int i = 0; i < exponent * before_size; i++)
factors.push_back(factors[factors.size() - before_size] * p);
if (sorted && factors[before_size - 1] > p)
for (int section = before_size; section < int(factors.size()); section *= 2)
for (int i = 0; i + section < int(factors.size()); i += 2 * section) {
int length = min(2 * section, int(factors.size()) - i);
merge(factors.begin() + i, factors.begin() + i + section,
factors.begin() + i + section, factors.begin() + i + length,
buffer.begin());
copy(buffer.begin(), buffer.begin() + length, factors.begin() + i);
}
}
return factors;
}
const int maxN = 4e6 + 10;
void run_cases() {
int64_t N, P;
cin >> N >> P;
vector<int64_t> dp(N + 1);
dp[1] = 1;
int64_t sum = 1;
for(int i = 2; i <= N; i++) {
sum += dp[i - 1];
sum %= P;
sum += dp[1];
sum %= P;
for(auto u: generate_factors(prime_factorize(i))) {
if(u == 1) continue;
sum += dp[u];
sum %= P;
sum -= dp[u - 1];
sum %= P;
sum += P;
sum %= P;
}
dp[i] = sum;
sum += sum;
}
cout << dp[N] << '\n';
}
int main() {
ios_base::sync_with_stdio(0); cin.tie(nullptr);
sieve(maxN);
int tests = 1;
// cin >> tests;
for(int test = 1;test <= tests;test++) {
run_cases();
}
}