-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathD.cpp
210 lines (166 loc) · 5.31 KB
/
D.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#include <bits/stdc++.h>
using namespace std;
#define nl '\n'
//----------------------------------- DEBUG -----------------------------------
#define sim template < class c
#define ris return * this
#define dor > debug & operator <<
#define eni(x) sim > typename \
enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) {
sim > struct rge { c b, e; };
sim > rge<c> range(c i, c j) { return rge<c>{i, j}; }
sim > auto dud(c* x) -> decltype(cerr << *x, 0);
sim > char dud(...);
struct debug {
#ifdef LOCAL
~debug() { cerr << endl; }
eni(!=) cerr << boolalpha << i; ris; }
eni(==) ris << range(begin(i), end(i)); }
sim, class b dor(pair < b, c > d) {
ris << "(" << d.first << ", " << d.second << ")";
}
sim dor(rge<c> d) {
*this << "[";
for (auto it = d.b; it != d.e; ++it)
*this << ", " + 2 * (it == d.b) << *it;
ris << "]";
}
#else
sim dor(const c&) { ris; }
#endif
};
#define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] "
// debug & operator << (debug & dd, P p) { dd << "(" << p.x << ", " << p.y << ")"; return dd; }
//----------------------------------- END DEBUG --------------------------------
int count_divisors(int64_t N) {
int ans = 0;
for(int i = 1; i * i <= N; i++) {
if(N % i == 0) {
ans++;
if(N / i != i) {
ans++;
}
}
}
return ans;
}
vector<int> smallest_factor;
vector<bool> prime;
vector<int> primes;
void sieve(int maximum) {
maximum = max(maximum, 1);
smallest_factor.assign(maximum + 1, 0);
prime.assign(maximum + 1, true);
prime[0] = prime[1] = false;
primes = {};
for (int p = 2; p <= maximum; p++)
if (prime[p]) {
smallest_factor[p] = p;
primes.push_back(p);
for (int64_t i = int64_t(p) * p; i <= maximum; i += p)
if (prime[i]) {
prime[i] = false;
smallest_factor[i] = p;
}
}
}
// Prime factorizes n in worst case O(sqrt n / log n). Requires having run `sieve` up to at least sqrt(n).
// If we've run `sieve` up to at least n, takes O(log n) time.
vector<pair<int64_t, int>> prime_factorize(int64_t n) {
int64_t sieve_max = int64_t(smallest_factor.size()) - 1;
assert(1 <= n && n <= sieve_max * sieve_max);
vector<pair<int64_t, int>> result;
if (n <= sieve_max) {
while (n != 1) {
int64_t p = smallest_factor[n];
int exponent = 0;
do {
n /= p;
exponent++;
} while (n % p == 0);
result.emplace_back(p, exponent);
}
return result;
}
for (int64_t p : primes) {
if (p * p > n)
break;
if (n % p == 0) {
result.emplace_back(p, 0);
do {
n /= p;
result.back().second++;
} while (n % p == 0);
}
}
if (n > 1)
result.emplace_back(n, 1);
return result;
}
vector<int64_t> generate_factors(const vector<pair<int64_t, int>> &prime_factors, bool sorted = false) {
// See http://oeis.org/A066150 and http://oeis.org/A036451 for upper bounds on number of factors.
static vector<int64_t> buffer;
int product = 1;
for (auto &pf : prime_factors)
product *= pf.second + 1;
vector<int64_t> factors = {1};
factors.reserve(product);
if (sorted)
buffer.resize(product);
for (auto &pf : prime_factors) {
int64_t p = pf.first;
int exponent = pf.second;
int before_size = int(factors.size());
for (int i = 0; i < exponent * before_size; i++)
factors.push_back(factors[factors.size() - before_size] * p);
if (sorted && factors[before_size - 1] > p)
for (int section = before_size; section < int(factors.size()); section *= 2)
for (int i = 0; i + section < int(factors.size()); i += 2 * section) {
int length = min(2 * section, int(factors.size()) - i);
merge(factors.begin() + i, factors.begin() + i + section,
factors.begin() + i + section, factors.begin() + i + length,
buffer.begin());
copy(buffer.begin(), buffer.begin() + length, factors.begin() + i);
}
}
return factors;
}
int count_primes(vector<pair<int64_t, int>> p) {
int ans = 0;
for(auto u: p) {
ans += u.second;
}
return ans;
}
void run_cases() {
int64_t a, b, k;
cin >> a >> b >> k;
int hcf = gcd(a, b);
int div1 = a / hcf;
int div2 = b / hcf;
int cnt1 = count_primes(prime_factorize(div1));
int cnt2 = count_primes(prime_factorize(div2));
int cnt = count_primes(prime_factorize(hcf));
debug() << imie(cnt1) imie(cnt2);
for(int i = 0; i <= cnt; i++) {
int min_moves = (cnt1 != 0) + (cnt2 != 0);
int max_moves = (cnt1 + cnt2);
debug() << imie(min_moves) imie(max_moves) imie(k);
if(k >= min_moves && k <= max_moves) {
cout << "YES\n";
return;
}
cnt1++;
cnt2++;
}
cout << "NO\n";
}
int main() {
ios_base::sync_with_stdio(0); cin.tie(nullptr);
sieve(int(1e6));
int tests = 1;
cin >> tests;
for(int test = 1;test <= tests;test++) {
run_cases();
}
}