-
Notifications
You must be signed in to change notification settings - Fork 4
/
models.py
155 lines (120 loc) · 5.32 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
### Adapted for 1D data from https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py ###
import numpy as np
import os
import torch
import torch.nn as nn
import torch.utils.data as utils
import torch.nn.functional as F
from torch.distributions.normal import Normal
def conv15x1(in_channels, out_channels, stride=1):
return nn.Conv1d(in_channels, out_channels, kernel_size=15, stride=stride, padding=7)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(BasicBlock, self).__init__()
norm_layer = nn.BatchNorm1d
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv15x1(in_channels, out_channels, stride)
self.bn1 = norm_layer(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv15x1(out_channels, out_channels)
self.bn2 = norm_layer(out_channels)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_outputs=1, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=nn.BatchNorm1d):
super(ResNet, self).__init__()
self.num_outputs = num_outputs
self._norm_layer = norm_layer
self.inplanes = 32
self.conv1 = nn.Conv1d(12, self.inplanes, kernel_size=15, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 32, layers[0])
self.layer2 = self._make_layer(block, 64, layers[1], stride=2)
self.layer3 = self._make_layer(block, 128, layers[2], stride=2)
self.layer4 = self._make_layer(block, 256, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Sequential(
nn.Linear(256, num_outputs))
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm1d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
# print("Got to downsample place")
downsample = nn.Sequential(
nn.Conv1d(self.inplanes, planes, kernel_size=1, stride=stride, bias=False),
norm_layer(planes),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _forward_impl(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def forward(self, x):
op = self._forward_impl(x)
return op
def _resnet(arch, block, layers, pretrained, progress, **kwargs):
model = ResNet(block, layers, **kwargs)
return model
def resnet18(pretrained=False, progress=True, **kwargs):
r"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained=False, progress=False,
**kwargs)
def resnet34(pretrained=False, progress=True, **kwargs):
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet18', BasicBlock, [3, 4, 6, 3], pretrained=False, progress=False,
**kwargs)