forked from cdoersch/deepcontext
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
473 lines (431 loc) · 17.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import sys
sys.path.insert(0,'caffe_ext/python');
import utils as ut;
from multiprocessing import Process, Queue, Pool
import matplotlib.pyplot as plt
import numpy as np
import os, subprocess, time, math, random, shutil, signal, glob, re
from caffe import layers as L, params as P, to_proto, NetSpec, get_solver, Net
from caffe.proto import caffe_pb2
import caffe
import deepcontext_config
# Basic Configuration
patch_sz=(96,96) # size of sampled patches
batch_sz=512 # max patches in a single batch
gap = 48 # gap between patches
noise = 7 # jitter by at most this many pixels
def netset(n, nm, l):
setattr(n, nm, l);
return getattr(n,nm);
def conv_relu(n, bottom, name, ks, nout, stride=1, pad=0, group=1,
batchnorm=False, weight_filler=dict(type='xavier')):
conv = netset(n, 'conv'+name, L.Convolution(bottom, kernel_size=ks, stride=stride,
num_output=nout, pad=pad, group=group,
weight_filler=weight_filler))
convbatch=conv;
if batchnorm:
batchnorm = netset(n, 'bn'+name, L.BatchNorm(conv, in_place=True,
param=[{"lr_mult":0},{"lr_mult":0},{"lr_mult":0}]));
convbatch = batchnorm
# Note that we don't have a scale/shift afterward, which is different from
# the original Batch Normalization layer. Using a scale/shift layer lets
# the network completely silence the activations in a given layer, which
# is exactly the behavior that we need to prevent early on.
relu=netset(n, 'relu'+name, L.ReLU(convbatch, in_place=True))
return conv, relu
def fc_relu(n, bottom, name, nout, batchnorm=False):
fc = netset(n, 'fc'+name, L.InnerProduct(bottom, num_output=nout,
weight_filler = dict(type='xavier')))
fcbatch=fc;
if batchnorm:
batchnorm = netset(n, 'bn'+name, L.BatchNorm(fc, in_place=True,
param=[{"lr_mult":0},{"lr_mult":0},{"lr_mult":0}]));
fcbatch = batchnorm
relu = netset(n, 'relu'+name, L.ReLU(fcbatch, in_place=True));
return fc, relu
def max_pool(bottom, ks, stride=1):
return L.Pooling(bottom, pool=P.Pooling.MAX, kernel_size=ks, stride=stride)
def caffenet_stack(data, n, use_bn=True):
conv_relu(n, data, '1', 11, 96, stride=4, pad=5)
n.pool1 = max_pool(n.relu1, 3, stride=2)
n.norm1 = L.LRN(n.pool1, local_size=5, alpha=1e-4, beta=0.75)
conv_relu(n, n.norm1, '2', 5, 256, pad=2)
n.pool2 = max_pool(n.relu2, 3, stride=2)
n.norm2 = L.LRN(n.pool2, local_size=5, alpha=1e-4, beta=0.75)
conv_relu(n, n.norm2, '3', 3, 384, pad=1, batchnorm=use_bn)
conv_relu(n, n.relu3, '4', 3, 384, pad=1, batchnorm=use_bn)
conv_relu(n, n.relu4, '5', 3, 256, pad=1, batchnorm=use_bn)
n.pool5 = max_pool(n.relu5, 3, stride=2)
fc_relu(n, n.pool5, '6', 4096, batchnorm=use_bn)
def gen_net(batch_size=512, use_bn=True):
n=NetSpec();
n.data = L.DummyData(shape={"dim":[batch_size,3,96,96]})
n.select1 = L.DummyData(shape={"dim":[2]})
n.select2 = L.DummyData(shape={"dim":[2]})
n.label = L.DummyData(shape={"dim":[2]})
caffenet_stack(n.data, n, use_bn)
n.first = L.BatchReindex(n.relu6, n.select1)
n.second = L.BatchReindex(n.relu6, n.select2)
n.fc6_concat=L.Concat(n.first, n.second);
fc_relu(n, n.fc6_concat, '7', 4096, batchnorm=use_bn);
fc_relu(n, n.relu7, '8', 4096);
n.fc9 = L.InnerProduct(n.relu8, num_output=8,
weight_filler=dict(type='xavier'));
n.loss = L.SoftmaxWithLoss(n.fc9, n.label, loss_param=dict(normalization=P.Loss.NONE));
prot=n.to_proto()
prot.debug_info=True
return prot;
# image preprocessing. Note that the input image will modified.
def prep_image(im):
# for some patches, randomly downsample to as little as 100 total pixels
if(random.random() < .33):
origsz=im.shape
randpix=int(math.sqrt(random.random() * (95 * 95 - 10 * 10) + 10 * 10))
im=caffe.io.resize(im.astype(np.uint8), (randpix, randpix))
im=(caffe.io.resize(im, (origsz[0], origsz[1])) * 255).astype(np.float32)
# randomly drop all but one color channel
chantokeep=random.randint(0, 2);
mean=[123, 117, 104]
for i in range(0, 3):
if i==chantokeep:
im[:,:,i]-=np.mean(im[:,:,i])
else:
im[:,:,i]=np.random.uniform(0, 1, (im.shape[0], im.shape[1])) - .5
# Normalize the mean and variance so that gradients are a less useful cue;
# then scale by 50 so that the variance is roughly the same as the usual
# AlexNet inputs.
im=im / np.sqrt(np.mean(np.square(im))) * 50
return im.transpose(2, 0, 1)
# Sample a patch. This function defines a grid over the image of patches
# of size patch_sz with a gap of gap between the patches. The upper-left
# corner of the grid starts at (gridstartx, gridstarty). We then sample
# the patch at location (x, y) on this grid, jitter by up to noisehalf in
# every direction. im_shape is the dimensions of the image; an error
# is thrown if (x, y) refers to a patch outside the image frame.
#
# Returns the coordinates of the sampled patch's upper left corner.
def sample_patch(x, y, gridstartx, gridstarty, patch_sz, gap, noisehalf,
im_shape):
xpix = gridstartx + x * (patch_sz[1] + gap) \
+ random.randint(-noisehalf, noisehalf)
xpix2 = min(max(xpix, 0), im_shape[1] - patch_sz[1])
ypix = gridstarty + y * (patch_sz[0] + gap) \
+ random.randint(-noisehalf, noisehalf)
ypix2 = min(max(ypix, 0), im_shape[0] - patch_sz[0])
assert abs(xpix - xpix2) < gap
assert abs(ypix - ypix2) < gap
return (xpix2 , ypix2)
# A background thread which loads images, extracts pairs of patches, arranges
# them into batches.
#
# args:
# dataq: A queue object where the batches of data will be sent. Batches
# consist of a tuple of:
# (1) a 4-d array of of N patches, or a filename of
# a file containing the data,
# (2) a list of pairs of patches to be used as training examples, kept in
# an array of shape N-by-2,
# (3) an array of labels for each pair, which are in the range 0-7.
#
# batch_sz: max number of patches go in each batch
# imgs: a list of images (see load_imageset)
# tmpdir: if not None, data batches will be saved here and the resulting
# filename will be sent through the queue rather than the data.
# seed: a seed for the random number generator, required so that different
# processes produce images in a different order:
# tid: thread id for use in filenames.
# patch_sz: size of sampled patches
def imgloader(dataq, batch_sz, imgs, tmpdir, seed, tid, patch_sz):
qctr = 0
curidx = 0
# order for going through the images
np.random.seed(seed)
imgsord=np.random.permutation(len(imgs['filename']))
# sample this many grids per image
num_grids = 4
gridctr = 0
# storage for the sampled batch
perm = []
label = []
pats = []
# index within the current batch
j = 0;
# keep returning batches forever. Each iteration of this loop
# samples one grid of patches from an image.
while True:
# if we've already sampled num_grids in this image, we sample a new one.
if(gridctr==0):
while True:
try:
im=ut.get_resized_image(imgsord[curidx % len(imgs['filename'])],
imgs,
{"gri_targpixels":random.randint(150000,450000)})
except:
curidx = (curidx + 1) % (len(imgsord))
print("broken image id " + str(curidx))
continue;
curidx = (curidx + 1) % (len(imgsord));
if(im.shape[0] > patch_sz[0] * 2 + gap + noise and
im.shape[1] > patch_sz[1] * 2 + gap + noise):
break
gridctr = num_grids;
# compute where the grid starts, and then comptue its size.
gridstartx = random.randint(0, patch_sz[1] + gap - 1)
gridstarty = random.randint(0, patch_sz[0] + gap - 1)
gridszx = int((im.shape[1] + gap-gridstartx) / (patch_sz[1] + gap))
gridszy = int((im.shape[0] + gap-gridstarty) / (patch_sz[0] + gap))
# Whenever we sample and store a patch, we'll put its index in this
# variable so it's easy to pair it up later.
grid=np.zeros((gridszy, gridszx), int)
# if we can't fit the current grid into the batch without going over
# batch_sz, put the batch in the queue and reset.
if(gridszx * gridszy + j >= batch_sz):
pats=map(prep_image, pats)
data=np.array(pats)
qctr+=1
perm=(np.array(perm))
label=(np.array(label))
if tmpdir is None:
dataq.put((np.ascontiguousarray(data), perm, label), timeout=600)
else:
fnm=tmpdir + str(tid) + '_' + str(qctr) + '.npy'
np.save(fnm, data)
dataq.put((fnm, perm, label), timeout=600)
perm=[]
label=[]
pats=[]
j=0
gridctr-=1;
# for each location in the grid, sample a patch, search up and to the
# left for patches that can be paired with it, and add them to the batch.
for y in range(0,gridszy):
for x in range(0,gridszx):
(xpix, ypix)=sample_patch(x, y, gridstartx, gridstarty, patch_sz,
gap, noise, im.shape)
pats.append(np.copy(
im[ypix:ypix + patch_sz[0], xpix:xpix + patch_sz[1], :]*255));
grid[y, x] = j;
for pair in [(-1,-1), (0,-1), (1,-1), (-1,0)]:
gridposx = pair[0] + x;
gridposy = pair[1] + y;
if(gridposx < 0 or gridposy < 0 or gridposx >= gridszx):
continue;
perm.append(np.array([j, grid[gridposy, gridposx]]));
label.append(pos2lbl(pair));
perm.append(np.array([grid[gridposy, gridposx],j]))
label.append(pos2lbl((-pair[0],-pair[1])));
j+=1;
# convert an (x, y) offset into a single number to use as a label. Labels are:
# 1 2 3
# 4 5
# 6 7 8
def pos2lbl(pos):
(posx, posy)=pos;
if(posy==-1):
lbl = posx + 1;
elif(posy == 0):
lbl = (posx + 7) / 2
else:
assert(posy == 1);
lbl = posx + 6;
return lbl;
# will set these later, need to make it global for signal handler
if 'exp_name' not in locals():
exp_name='';
def signal_handler(signal, frame):
print("PYCAFFE IS NOT GUARANTEED TO RETURN CONTROL TO PYTHON WHEN " +
"INTERRUPTED. That means I can't necessarily clean up temporary files " +
"and spawned processes. " +
"You were lucky this time. Run deepcontext_quit() to quit. Next time touch " +
exp_name + '_pause to pause safely and ' + exp_name + '_quit to quit.')
# return a dict containing two fields 'dir' (a string) and 'filename' (a list
# of strings) such that
# scipy.misc.imread(imgs['dir'] + imgs['filename'][idx]) will return
# an image. Make sure the order of imgs['filename'] is deterministic, since
# the code uses the index in this list as an ID for each image.
def load_imageset():
datadir=deepcontext_config.imagenet_dir;
imgs={};
imgs['dir']=datadir+'train/';
names=[];
with open(datadir + 'train.txt', 'rb') as f:
for line in f:
row=line.split();
names.append(row[0]);
imgs['filename']=names;
return imgs;
# The main code body.
try:
if 'solver' not in locals():
exp_name=ut.mfilename();
# all generated files will be here.
outdir = deepcontext_config.out_dir + '/' + exp_name + '_out/';
if deepcontext_config.tmp_dir:
tmpdir = deepcontext_config.tmp_dir + '/' + exp_name + '_out/';
else:
tmpdir = None
if not os.path.exists(outdir):
os.mkdir(outdir);
else:
try:
input=raw_input;
except:
pass;
print('=======================================================================');
print('Found old data. Load most recent snapshot and append to log file (y/N)?');
inp=input('======================================================================');
if not 'y' == inp.lower():
raise RuntimeError("User stopped execution");
if not os.path.exists(tmpdir):
os.makedirs(tmpdir);
# by default, we append to the logfile if it's already there.
#if os.path.exists(outdir + "out.log"):
# os.remove(outdir + "out.log")
# Magic commands to redirect standard output and standard
# error to a log file for easy plotting of the loss function. Note that
# running these commands will screw up your terminal; hence why the whole
# code is wrapped in a try/finally statement that puts things back the way
# they were.
prevOutFd = os.dup(sys.stdout.fileno())
prevErrFd = os.dup(sys.stderr.fileno())
tee = subprocess.Popen(["tee", "-a", outdir + "out.log"], stdin=subprocess.PIPE)
os.dup2(tee.stdin.fileno(), sys.stdout.fileno())
os.dup2(tee.stdin.fileno(), sys.stderr.fileno())
# if the solver hasn't been set up yet, do so now. Otherwise assume that
# we're continuing.
if 'solver' not in locals():
if os.path.isfile(exp_name + '_pause'):
os.remove(exp_name + '_pause')
if os.path.isfile(exp_name + '_quit'):
os.remove(exp_name + '_quit')
with open(outdir+'network.prototxt','w') as f:
f.write(str(gen_net()));
with open(outdir+'network_no_bn.prototxt','w') as f:
f.write(str(gen_net(use_bn=False)));
ut.mkorender('solver_mko.prototxt', outdir + 'solver.prototxt',
base_lr=1e-5, outdir=outdir, weight_decay=0)
print('setting gpu')
caffe.set_mode_gpu();
print('constructing solver')
solver = caffe.get_solver(outdir + 'solver.prototxt');
# Find earlier solvers and restore them
fils=glob.glob(outdir + 'model_iter_*.solverstate');
if(len(fils)>0):
idxs=[];
for f in fils:
idxs.append(int(re.findall('\d+',os.path.basename(f))[0]));
idx=np.argmax(np.array(idxs));
solver.restore(outdir + os.path.basename(fils[idx]));
# we occasionally read out the parameters in this list and save the norm
# of the update out to disk, so we can make sure they're updating at
# the right speed.
track=[];
for bl in solver.net.params:
if not 'bn' in bl:
track.append(bl);
nrm=dict();
intval={};
trackold={};
for tracknm in track:
intval[tracknm]=[];
nrm[tracknm]=[];
curstep = 0;
# load the images
imgs=load_imageset();
# start the data prefetching threads.
dataq=[]
procs=[]
i=0
for i in range(0,3):
dataq.append(Queue(5))
procs.append(Process(target=imgloader,
args=(dataq[-1], batch_sz, imgs, tmpdir,
(hash(outdir)+i) % 1000000, #random seed
i, patch_sz)))
procs[-1].start()
def deepcontext_quit():
for proc in procs:
proc.terminate()
time.sleep(2)
shutil.rmtree(tmpdir)
os.kill(os.getpid(), signal.SIGKILL)
signal.signal(signal.SIGINT, signal_handler)
# The main loop over batches.
while True:
start=time.time();
(datafnm, perm, label)=dataq[curstep % len(dataq)].get(timeout=600)
print("queue size: " + str(dataq[curstep % len(dataq)].qsize()))
if(tmpdir is None):
d=datafnm
else:
d=np.load(datafnm,mmap_mode='r')
os.remove(datafnm)
# input the patch data
solver.net.blobs['data'].reshape(*d.shape)
solver.net.blobs['data'].data[:]=d[:]
# input the patch pairings
solver.net.blobs['select1'].reshape(*(perm.shape[0],))
solver.net.blobs['select1'].data[:]=perm[:,0]
solver.net.blobs['select2'].reshape(*(perm.shape[0],))
solver.net.blobs['select2'].data[:]=perm[:,1]
# input the labels
solver.net.blobs['label'].reshape(*label.shape)
solver.net.blobs['label'].data[:]=label
print("data input time: " + str(time.time()-start));
# take a step
solver.step(1)
print("norm_loss: " + str(solver.net.blobs['loss'].data /
(label.shape[0])));
print("solver step time: " + str(time.time() - start));
dobreak=False;
broken=[];
msg = (' Please examine the situation and re-execute ' + exp_name +
'.py to continue.')
if curstep % 100 == 0:
start = time.time()
print("getting param statistics...")
for tracknm in track:
try:
intval[tracknm].append(np.sqrt(np.sum(np.square(
solver.net.params[tracknm][0].data - trackold[tracknm]))));
if (intval[tracknm][-1] > 10 * intval[tracknm][-2]
and curstep > 100) \
or np.isnan(intval[tracknm][-1]):
print(tracknm + " changed a suspiciously large amount." + msg)
dobreak = True;
broken.append(tracknm);
except:
print("init " + tracknm + " statistics")
trackold[tracknm]=np.copy(solver.net.params[tracknm][0].data);
nrmval=np.sqrt(np.sum(solver.net.params[tracknm][0].data *
solver.net.params[tracknm][0].data))
nrm[tracknm].append(nrmval);
np.save(outdir + 'intval',intval);
np.save(outdir + 'nrm',nrm);
print("param statistics time: " + str(time.time()-start));
val = np.sum(solver.net.params["fc8"][0].data);
if np.isnan(val) or val > 1e10:
print("fc8 activations look broken to me." + msg)
dobreak = True;
val2 = np.max(np.abs(solver.net.blobs["pool1"].diff));
if np.isnan(val2) or val2 > 1e8:
print("pool1 diffs look broken to me." + msg)
dobreak = True;
curstep += 1;
if dobreak:
break;
if os.path.isfile(exp_name + '_pause'):
break;
if os.path.isfile(exp_name + '_quit'):
# Need to kill the subprocesses and delete the temporary files.
deepcontext_quit();
except KeyboardInterrupt:
if 'procs' in locals():
handler(None,None)
raise;
finally:
if 'prevOutFd' in locals():
os.dup2(prevOutFd, sys.stdout.fileno())
os.close(prevOutFd)
os.dup2(prevErrFd, sys.stderr.fileno())
os.close(prevErrFd)