-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy patheval.py
142 lines (121 loc) · 7.21 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python2.7
import argparse
import os
import time
import numpy as np
import tensorflow as tf
from model import CNNModel
from model import restore_model
from preprocessing import read_object_classes, FROM_GAMES, DATASETS, save_labels_array
from train import run_model_iter
def test_model(sess, model, dataset_iter, layer, use_patches=False, patches_per_image=1000, gaussian_sigma=None,
color_map=None, output_dir=None):
"""
Tests the given model for accuracy, with the given parameters. Also optionally outputs test labels as images to a given directory.
:param sess: A tensorflow session in which to run the model
:param model: A CNNModel (an rCNN)
:param dataset_iter: An iterator that yields tuples of (images, labels, image_name) of test data
:param layer: Which layer of the rCNN to get labels from -- can be 1 or 2
:param use_patches: Whether to test individual patches (randomly sampled from each image) or simply whole images
:param patches_per_image: Number of patches to sample from each image
:param gaussian_sigma: The size of the gaussian filter applied to each input image. By default, no filter is applied.
:param color_map: An array of (r,g,b) tuples for each label category. Used to output images.
:param output_dir: If not None, the function stores predicted labels (for each layer) in this directory
"""
total_accuracy = 0
class_correct_counts = np.zeros(model.num_classes)
class_total_counts = np.zeros(model.num_classes)
i = 0
# this yields a series of output logits from the model, one for each distinct input
# if training on whole images, returns only one output
def iter_model():
return run_model_iter(sess, model, image, labels, is_training=False, use_patches=use_patches,
patches_per_image=patches_per_image, gaussian_sigma=gaussian_sigma)
for image, labels, img_id in dataset_iter():
i += 1
start_time = time.time()
accuracy = 0.0
if use_patches:
patch_size = model.PATCH_SIZE
# get output for each patch from the model
for ops, patch_labels in iter_model():
logits1, logits2, _ = ops
logits = logits1 if layer == 1 else logits2
_, output_h, output_w, _ = logits.shape
predicted_label = np.argmax(logits[0, output_h / 2, output_w / 2, :])
true_label = patch_labels[patch_size / 2, patch_size / 2]
class_total_counts[true_label] += 1
if true_label == predicted_label:
class_correct_counts[true_label] += 1
accuracy += 1
print "Image #%d: %s Accuracy: %f (time: %.1fs)" % (
i, img_id, accuracy / patches_per_image, time.time() - start_time)
else:
# run model on whole image at once
for logits1, logits2, _ in iter_model():
# output size is different for each layer
logits = logits1 if layer == 1 else logits2
stride = 4 if layer == 2 else 2
predicted_labels = np.argmax(logits[0], axis=2)
true_labels = labels[::stride, ::stride]
correct_labels = np.equal(predicted_labels, true_labels)
accuracy = np.mean(correct_labels)
total_accuracy += accuracy
for c in range(model.num_classes):
current_class_labels = np.equal(true_labels, c)
class_total_counts[c] += np.sum(current_class_labels)
class_correct_counts[c] += np.sum(np.equal(true_labels, c) * correct_labels)
print "Image #%d: %s: Accuracy: %f (time: %.1fs)" % (
i, img_id, accuracy, time.time() - start_time)
# write outputs to disk
if output_dir is not None and color_map is not None:
for layer_num in [1,2]:
output_filename = os.path.join(output_dir, img_id + '_test_%d.png' % layer_num)
predicted_labels = None
for logits1, logits2, _ in iter_model():
logits = [logits1, logits2][layer_num - 1]
predicted_labels = np.argmax(logits[0], axis=2)
predicted_labels = np.kron(predicted_labels, np.ones(shape=[4, 4]))
save_labels_array(predicted_labels.astype(np.uint8), output_filename, colors=color_map)
print "%d Images, Total Accuracy: %f" % (i, total_accuracy / i)
print "Per Class correct counts:", class_correct_counts
print "Per Class totals:", class_total_counts
print "Per Class accuracy:", class_correct_counts / class_total_counts
def main():
# parse command line arguments
parser = argparse.ArgumentParser(description='Evaluate an rCNN scene labelling model.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--model', type=str, help='Filename of saved model')
parser.add_argument('--category_map', type=str, help='File that maps colors ')
parser.add_argument('--dataset', type=str, default=FROM_GAMES, choices=DATASETS.keys(),
help='Type of dataset to use. This determines the expected format of the data directory')
parser.add_argument('--data_dir', type=str, help='Directory for image and label data')
parser.add_argument('--output_dir', type=str, default=None,
help='Directory to store model output. By default no output is generated.')
parser.add_argument('--patch_size', type=int, default=67, help='Size of input patches')
parser.add_argument('--use_patches', action='store_true', default=False,
help='Whether to evaluate model on individual patches')
parser.add_argument('--patches_per_image', type=int, default=2000,
help='Number of patches to sample from each test image. Not used by default.')
parser.add_argument('--gaussian_sigma', type=int, choices=[15, 30], default=None,
help='Size of gaussian mask to apply to patches. Not used by default.')
parser.add_argument('--test_fraction', type=float, default=-0.2,
help='Fraction of data to test on. If positive, tests on first X images, otherwise tests on '
'last X images.')
parser.add_argument('--layer', choices=[1,2], type=int, default=2,
help='Number of rCNN layers to use.')
args = parser.parse_args()
# load class labels
category_colors, category_names, names_to_ids = read_object_classes(args.category_map)
num_classes = len(category_names)
# load dataset
def dataset_func(): return DATASETS[args.dataset](args.data_dir, train_fraction=args.test_fraction)
# TODO only test?
# TODO don't hardcode these (maybe store them in config file?)
model = CNNModel(25, 50, 1, num_classes, 1e-4, num_layers=2)
sess = tf.Session()
restore_model(sess, args.model)
test_model(sess, model, dataset_func, args.layer, use_patches=args.use_patches, patches_per_image=args.patches_per_image,
gaussian_sigma=args.gaussian_sigma, output_dir=args.output_dir, color_map=category_colors)
if __name__ == '__main__':
main()