forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
214 lines (188 loc) · 8.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import argparse
import os
import os.path as osp
import paddle
import paddle.nn as nn
import paddlenlp
from paddlenlp.utils.downloader import get_path_from_url
from paddlenlp.embeddings import TokenEmbedding
from paddlenlp.data import JiebaTokenizer, Vocab, Pad, Stack, Tuple
from paddlenlp.datasets import load_dataset
import data
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=5, help="Number of epoches for training.")
parser.add_argument("--device", type=str, default="gpu", help="Select cpu, gpu, xpu devices to train model.")
parser.add_argument("--lr", type=float, default=5e-4, help="Learning rate used to train.")
parser.add_argument("--save_dir", type=str, default='./checkpoints/', help="Directory to save model checkpoint")
parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number of a batch for training.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--use_token_embedding", type=eval, default=True, help="Whether use pretrained embedding")
parser.add_argument("--embedding_name", type=str, default="w2v.baidu_encyclopedia.target.word-word.dim300", help="The name of pretrained embedding")
parser.add_argument("--vdl_dir", type=str, default="vdl_dir/", help="VisualDL log directory")
args = parser.parse_args()
# yapf: enable
WORD_DICT_URL = "https://bj.bcebos.com/paddlenlp/data/dict.txt"
def create_dataloader(dataset,
trans_fn=None,
mode='train',
batch_size=1,
pad_token_id=0):
"""
Creats dataloader.
Args:
dataset(obj:`paddle.io.Dataset`): Dataset instance.
mode(obj:`str`, optional, defaults to obj:`train`): If mode is 'train', it will shuffle the dataset randomly.
batch_size(obj:`int`, optional, defaults to 1): The sample number of a mini-batch.
pad_token_id(obj:`int`, optional, defaults to 0): The pad token index.
Returns:
dataloader(obj:`paddle.io.DataLoader`): The dataloader which generates batches.
"""
if trans_fn:
dataset = dataset.map(trans_fn, lazy=True)
shuffle = True if mode == 'train' else False
sampler = paddle.io.BatchSampler(
dataset=dataset, batch_size=batch_size, shuffle=shuffle)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=vocab.get('[PAD]', 0)), # input_ids
Stack(dtype="int32"), # seq len
Stack(dtype="int64") # label
): [data for data in fn(samples)]
dataloader = paddle.io.DataLoader(
dataset,
batch_sampler=sampler,
return_list=True,
collate_fn=batchify_fn)
return dataloader
class BoWModel(nn.Layer):
"""
This class implements the Bag of Words Classification Network model to classify texts.
At a high level, the model starts by embedding the tokens and running them through
a word embedding. Then, we encode these epresentations with a `BoWEncoder`.
Lastly, we take the output of the encoder to create a final representation,
which is passed through some feed-forward layers to output a logits (`output_layer`).
Args:
vocab_size (obj:`int`): The vocabulary size.
emb_dim (obj:`int`, optional, defaults to 300): The embedding dimension.
hidden_size (obj:`int`, optional, defaults to 128): The first full-connected layer hidden size.
fc_hidden_size (obj:`int`, optional, defaults to 96): The second full-connected layer hidden size.
num_classes (obj:`int`): All the labels that the data has.
"""
def __init__(self,
vocab_size,
num_classes,
vocab_path,
emb_dim=300,
hidden_size=128,
fc_hidden_size=96,
use_token_embedding=True):
super().__init__()
if use_token_embedding:
self.embedder = TokenEmbedding(
args.embedding_name, extended_vocab_path=vocab_path)
emb_dim = self.embedder.embedding_dim
else:
padding_idx = vocab_size - 1
self.embedder = nn.Embedding(
vocab_size, emb_dim, padding_idx=padding_idx)
self.bow_encoder = paddlenlp.seq2vec.BoWEncoder(emb_dim)
self.fc1 = nn.Linear(self.bow_encoder.get_output_dim(), hidden_size)
self.fc2 = nn.Linear(hidden_size, fc_hidden_size)
self.dropout = nn.Dropout(p=0.3, axis=1)
self.output_layer = nn.Linear(fc_hidden_size, num_classes)
def forward(self, text, seq_len=None):
# Shape: (batch_size, num_tokens, embedding_dim)
embedded_text = self.embedder(text)
# Shape: (batch_size, embedding_dim)
summed = self.bow_encoder(embedded_text)
summed = self.dropout(summed)
encoded_text = paddle.tanh(summed)
# Shape: (batch_size, hidden_size)
fc1_out = paddle.tanh(self.fc1(encoded_text))
# Shape: (batch_size, fc_hidden_size)
fc2_out = paddle.tanh(self.fc2(fc1_out))
# Shape: (batch_size, num_classes)
logits = self.output_layer(fc2_out)
return logits
if __name__ == '__main__':
assert args.device in [
"cpu", "gpu", "xpu"
], "Invalid device! Available device should be cpu, gpu, or xpu."
paddle.set_device(args.device)
# Loads vocab.
vocab_path = "./dict.txt"
if not os.path.exists(vocab_path):
# download in current directory
get_path_from_url(WORD_DICT_URL, "./")
vocab = data.load_vocab(vocab_path)
if '[PAD]' not in vocab:
vocab['[PAD]'] = len(vocab)
# Loads dataset.
train_ds, dev_ds = load_dataset("chnsenticorp", splits=["train", "dev"])
# Constructs the newtork.
model = BoWModel(
vocab_size=len(vocab),
num_classes=len(train_ds.label_list),
vocab_path=vocab_path,
use_token_embedding=args.use_token_embedding)
if args.use_token_embedding:
vocab = model.embedder.vocab
data.set_tokenizer(vocab)
vocab = vocab.token_to_idx
else:
v = Vocab.from_dict(vocab, unk_token="[UNK]", pad_token="[PAD]")
data.set_tokenizer(v)
model = paddle.Model(model)
# Reads data and generates mini-batches.
trans_fn = partial(
data.convert_example,
vocab=vocab,
unk_token_id=vocab['[UNK]'],
is_test=False)
train_loader = create_dataloader(
train_ds,
trans_fn=trans_fn,
batch_size=args.batch_size,
mode='train',
pad_token_id=vocab['[PAD]'])
dev_loader = create_dataloader(
dev_ds,
trans_fn=trans_fn,
batch_size=args.batch_size,
mode='validation',
pad_token_id=vocab['[PAD]'])
optimizer = paddle.optimizer.Adam(
parameters=model.parameters(), learning_rate=args.lr)
# Defines loss and metric.
criterion = paddle.nn.CrossEntropyLoss()
metric = paddle.metric.Accuracy()
model.prepare(optimizer, criterion, metric)
# Loads pre-trained parameters.
if args.init_from_ckpt:
model.load(args.init_from_ckpt)
print("Loaded checkpoint from %s" % args.init_from_ckpt)
# Starts training and evaluating.
log_dir = 'use_normal_embedding'
if args.use_token_embedding:
log_dir = 'use_token_embedding'
log_dir = osp.join(args.vdl_dir, log_dir)
callback = paddle.callbacks.VisualDL(log_dir=log_dir)
model.fit(train_loader,
dev_loader,
epochs=args.epochs,
save_dir=args.save_dir,
callbacks=callback)