forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
64 lines (50 loc) · 2.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from args import parse_args
import paddle
import paddle.nn as nn
from paddlenlp.metrics import Perplexity
from seq2seq_attn import Seq2SeqAttnModel, CrossEntropyCriterion
from data import create_train_loader
def do_train(args):
device = paddle.set_device(args.device)
# Define dataloader
train_loader, eval_loader, src_vocab_size, tgt_vocab_size, eos_id = create_train_loader(
args)
model = paddle.Model(
Seq2SeqAttnModel(src_vocab_size, tgt_vocab_size, args.hidden_size, args.
hidden_size, args.num_layers, args.dropout, eos_id))
grad_clip = nn.ClipGradByGlobalNorm(args.max_grad_norm)
optimizer = paddle.optimizer.Adam(
learning_rate=args.learning_rate,
parameters=model.parameters(),
grad_clip=grad_clip)
ppl_metric = Perplexity()
model.prepare(optimizer, CrossEntropyCriterion(), ppl_metric)
print(args)
if args.init_from_ckpt:
model.load(args.init_from_ckpt)
print("Loaded checkpoint from %s" % args.init_from_ckpt)
benchmark_logger = paddle.callbacks.ProgBarLogger(
log_freq=args.log_freq, verbose=3)
model.fit(train_data=train_loader,
eval_data=eval_loader,
epochs=args.max_epoch,
eval_freq=1,
save_freq=1,
save_dir=args.model_path,
callbacks=[benchmark_logger])
if __name__ == "__main__":
args = parse_args()
do_train(args)