forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_OneHot.py
163 lines (136 loc) · 7.75 KB
/
test_tf_OneHot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from common.tf_layer_test_class import CommonTFLayerTest
from common.utils.tf_utils import permute_nchw_to_nhwc
class TestOneHot(CommonTFLayerTest):
@staticmethod
def create_one_hot_net(shape, depth, on_value, off_value, axis, ir_version, use_new_frontend):
"""
Tensorflow net
Input -> OneHot
IR net (can contain Permutes for input/output of OneHot, depending on shapes), all cases are:
Input (< 3D) -> OneHot
Input (3D) -> OneHot -> Permute (NHWC -> NCHW)
Input (> 3D) -> Permute (NCHW -> NHWC) -> OneHot -> Permute (NHWC -> NCHW)
"""
import tensorflow as tf
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
# Permute NCHW -> NHWC for TF network creation
net_shape = permute_nchw_to_nhwc(shape)
indices = tf.compat.v1.placeholder(tf.int32, shape=net_shape, name='input_indices')
result = tf.one_hot(indices,
depth,
on_value,
off_value,
axis,
name='Operation')
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
#
# Create reference IR net
#
ref_net = None
return tf_net, ref_net
test_data_1D = [
# check for default on/off value, axis params
dict(shape=[5], depth=7, on_value=None, off_value=None, axis=None),
dict(shape=[5], depth=7, on_value=2.0, off_value=-1.0, axis=0)]
@pytest.mark.parametrize("params", test_data_1D)
@pytest.mark.nightly
def test_OneHot_1D(self, params, ie_device, precision, ir_version, temp_dir, use_new_frontend,
use_old_api):
self._test(*self.create_one_hot_net(**params, ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
test_data_2D = [
dict(shape=[5, 6], depth=7, on_value=None, off_value=None, axis=None),
# check for default on/off value, axis params
dict(shape=[5, 6], depth=7, on_value=5.0, off_value=None, axis=None),
# check for default on/off value, axis params
dict(shape=[5, 6], depth=7, on_value=None, off_value=-1.0, axis=None),
# check for default on/off value, axis params
dict(shape=[5, 6], depth=7, on_value=None, off_value=None, axis=1),
# check for default on/off value, axis params
dict(shape=[5, 6], depth=7, on_value=2.0, off_value=-3.0, axis=0),
dict(shape=[5, 6], depth=7, on_value=2.0, off_value=-3.0, axis=1),
]
@pytest.mark.parametrize("params", test_data_2D)
@pytest.mark.nightly
def test_OneHot_2D(self, params, ie_device, precision, ir_version, temp_dir, use_new_frontend,
use_old_api):
self._test(*self.create_one_hot_net(**params, ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
test_data_3D = [
dict(shape=[5, 6, 7], depth=8, on_value=None, off_value=None, axis=None),
# check for default on/off value, axis params
dict(shape=[5, 6, 7], depth=8, on_value=6.0, off_value=None, axis=None),
# check for default on/off value, axis params
dict(shape=[5, 6, 7], depth=8, on_value=None, off_value=4.0, axis=None),
# check for default on/off value, axis params
dict(shape=[5, 6, 7], depth=8, on_value=None, off_value=None, axis=1),
# check for default on/off value, axis params
dict(shape=[5, 6, 7], depth=8, on_value=None, off_value=None, axis=0),
dict(shape=[5, 6, 7], depth=8, on_value=None, off_value=None, axis=1),
pytest.param(dict(shape=[5, 6, 7], depth=8, on_value=None, off_value=None, axis=2),
marks=pytest.mark.precommit_tf_fe),
]
@pytest.mark.parametrize("params", test_data_3D)
@pytest.mark.nightly
def test_OneHot_3D(self, params, ie_device, precision, ir_version, temp_dir, use_new_frontend,
use_old_api):
self._test(*self.create_one_hot_net(**params, ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
test_data_4D = [
dict(shape=[5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=None),
# check for default on/off value, axis params
dict(shape=[5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=2),
# check for default on/off value, axis params
dict(shape=[5, 6, 7, 8], depth=9, on_value=5.0, off_value=None, axis=None),
# check for default on/off value, axis params
dict(shape=[5, 6, 7, 8], depth=9, on_value=None, off_value=6.0, axis=None),
# check for default on/off value, axis params
dict(shape=[5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=0),
dict(shape=[5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=1),
dict(shape=[5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=2),
dict(shape=[5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=3),
]
@pytest.mark.parametrize("params", test_data_4D)
@pytest.mark.nightly
@pytest.mark.precommit
def test_OneHot_4D(self, params, ie_device, precision, ir_version, temp_dir, use_new_frontend,
use_old_api):
self._test(*self.create_one_hot_net(**params, ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
test_data_5D = [
dict(shape=[4, 5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=None),
# check for default on/off value, axis params
dict(shape=[4, 5, 6, 7, 8], depth=9, on_value=2.0, off_value=None, axis=None),
# check for default on/off value, axis params
dict(shape=[4, 5, 6, 7, 8], depth=9, on_value=None, off_value=4.0, axis=None),
# check for default on/off value, axis params
dict(shape=[4, 5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=1),
# check for default on/off value, axis params
dict(shape=[4, 5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=0),
dict(shape=[4, 5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=1),
dict(shape=[4, 5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=2),
dict(shape=[4, 5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=3),
dict(shape=[4, 5, 6, 7, 8], depth=9, on_value=None, off_value=None, axis=4),
]
@pytest.mark.parametrize("params", test_data_5D)
@pytest.mark.nightly
def test_OneHot_5D(self, params, ie_device, precision, ir_version, temp_dir, use_new_frontend,
use_old_api):
self._test(*self.create_one_hot_net(**params, ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)