forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_DynamicPartition.py
68 lines (58 loc) · 3.38 KB
/
test_tf_DynamicPartition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
class TestDynamicPartition(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'data' in inputs_info, "Test error: inputs_info must contain `data`"
assert 'partitions' in inputs_info, "Test error: inputs_info must contain `partitions`"
data_shape = inputs_info['data']
partitions_shape = inputs_info['partitions']
inputs_data = {}
inputs_data['data'] = np.random.randint(-50, 50, data_shape)
# segment_ids data must be sorted according to TensorFlow SegmentSum specification
inputs_data['partitions'] = np.random.randint(0, 5, partitions_shape)
return inputs_data
def create_dynamic_partition_net(self, data_shape, partitions_shape, num_partitions, data_type):
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
data = tf.compat.v1.placeholder(data_type, data_shape, 'data')
partitions = tf.compat.v1.placeholder(tf.int32, partitions_shape, 'partitions')
dynamic_partition = tf.raw_ops.DynamicPartition(data=data, partitions=partitions,
num_partitions=num_partitions)
for ind in range(num_partitions):
tf.identity(dynamic_partition[ind], name='dynamic_partition_{}'.format(ind))
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(data_shape=[6], partitions_shape=[6], num_partitions=10, data_type=tf.float32),
dict(data_shape=[4, 3], partitions_shape=[4], num_partitions=8, data_type=tf.float32),
dict(data_shape=[3, 4, 2], partitions_shape=[3], num_partitions=5, data_type=tf.float32),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_dynamic_partition_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
if not use_new_frontend:
pytest.skip("DynamicPartition operation is not supported via legacy frontend.")
self._test(*self.create_dynamic_partition_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
test_data_other_types = [
dict(data_shape=[10], partitions_shape=[10], num_partitions=10, data_type=tf.int32),
dict(data_shape=[7, 3], partitions_shape=[7], num_partitions=8, data_type=tf.int64),
]
@pytest.mark.parametrize("params", test_data_other_types)
@pytest.mark.nightly
def test_dynamic_partition_other_types(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
if not use_new_frontend:
pytest.skip("DynamicPartition operation is not supported via legacy frontend.")
self._test(*self.create_dynamic_partition_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)