-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathpalm_gtoz.m
108 lines (89 loc) · 3.42 KB
/
palm_gtoz.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
function Z = palm_gtoz(G,df1,df2)
% Convert a G-statistic (or any of its particular cases)
% to a z-statistic (normally distributed).
%
% Usage:
% Z = palm_gtoz(G,df1,df2)
%
% Inputs:
% G : G statistic.
% df1, df2 : Degrees of freedom (non-infinite).
%
% Outputs:
% Z : Z-score
%
% If df2 = NaN and df1 = 1, G is treated as Pearson's r.
% If df2 = NaN and df1 > 1, G is treated as R^2.
% If df2 = NaN and df1 = 0, G is treated as z already.
%
% _____________________________________
% Anderson Winkler
% FMRIB / University of Oxford
% Jan/2014
% http://brainder.org
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% PALM -- Permutation Analysis of Linear Models
% Copyright (C) 2015 Anderson M. Winkler
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Note that for speed, there's no argument checking.
% If df2 is NaN, this is r, R^2, or z already
if isnan(df2(1)),
if df1 == 0,
% If df1 is zero, this is already a z-stat (this is here more for
% compatibility).
Z = G;
elseif df1 == 1,
% If rank(C) = 1, i.e., df1 = 1, this is r, so
% do a Fisher's r-to-z stransformation
Z = atanh(G);
elseif df1 > 1,
% If rank(C) > 1, i.e., df1 > 1, this is R^2, so
% use a probit transformation.
Z = -erfcinv(2*G)*sqrt(2); %Z = norminv(G);
end
else
siz = size(G);
Z = zeros(siz);
df2 = bsxfun(@times,ones(siz),df2);
if df1 == 1,
% Deal with precision issues working on each
% tail separately
idx = G > 0;
%Z( idx) = -erfinv(2*palm_gcdf(-G( idx),1,df2( idx))-1)*sqrt(2);
%Z(~idx) = erfinv(2*palm_gcdf( G(~idx),1,df2(~idx))-1)*sqrt(2);
Z( idx) = erfcinv(2*palm_gcdf(-G( idx),1,df2( idx)))*sqrt(2);
Z(~idx) = -erfcinv(2*palm_gcdf( G(~idx),1,df2(~idx)))*sqrt(2);
elseif df1 == 0,
% If df1 is zero, this is already a z-stat (this is here more for
% compatibility).
Z = G;
else
% G-vals above the upper half are treated as
% "upper tail"; otherwise, "lower tail".
thr = (1./betainv(.5,df2/2,df1/2)-1).*df2/df1;
idx = G > thr;
% Convert G-distributed variables to Beta-distributed
% variables with parameters a=df1/2 and b=df2/2
B = (df1.*G./df2)./(1+df1.*G./df2);
a = df1/2;
b = df2/2;
% Convert to Z through a Beta incomplete function
%Z( idx) = -erfinv(2*betainc(1-B( idx),b( idx),a)-1)*sqrt(2);
%Z(~idx) = erfinv(2*betainc( B(~idx),a,b(~idx))-1)*sqrt(2);
Z( idx) = erfcinv(2*betainc(1-B( idx),b( idx),a))*sqrt(2);
Z(~idx) = -erfcinv(2*betainc( B(~idx),a,b(~idx)))*sqrt(2);
end
end