protpy - Package for generating protein physicochemical, biochemical and structural descriptors using their constituent amino acids.
- A demo of the software is available here
- A Medium article about
protPy
and its background etc is available here
protpy
is a Python software package for generating a variety of physicochemical, biochemical and structural descriptors for proteins. All of these descriptors are calculated using sequence-derived or physicochemical features of the amino acids that make up the proteins. These descriptors have been highly studied and used in a series of Bioinformatic applications including protein engineering, SAR (sequence-activity-relationships), predicting protein structure & function, subcellular localization, protein-protein interactions, drug-target interactions etc. The descriptors available in protpy
include:
- Amino Acid Composition (AAComp)
- Dipeptide Composition (DPComp)
- Tripeptide Composition (TPComp)
- Pseudo Amino Acid Composition (PAAComp)
- Amphiphilic Amino Acid Composition (APAAComp)
- Moreaubroto Autocorrelation (MBAuto)
- Moran Autocorrelation (MAuto)
- Geary Autocorrelation (GAuto)
- Conjoint Triad (CTriad)
- CTD (Composition, Transition, Distribution) (CTD)
- Sequence Order Coupling Number (SOCN)
- Quasi Sequence Order (QSO)
This software is aimed at any researcher or developer using protein sequence/structural data, and was mainly created to use in my own project pySAR
which uses protein sequence data to identify Sequence Activity Relationships (SAR) using Machine Learning [1]. protpy
is built and developed in Python 3.10.
- Python >= 3.8
- aaindex >= 1.1.2
- numpy >= 1.16.0
- pandas >= 1.1.0
- varname >= 0.12.0
- biopython >= 1.81 (only required for testing)
Install the latest version of protpy
using pip:
pip3 install protpy --upgrade
Install by cloning repository:
git clone https://github.com/amckenna41/protpy.git
python3 setup.py install
import protpy as protpy
from Bio import SeqIO
with open("test_fasta.fasta") as pro:
protein_seq = str(next(SeqIO.parse(pro,'fasta')).seq)
Calculate Amino Acid Composition:
amino_acid_composition = protpy.amino_acid_composition(protein_seq)
# A C D E F ...
# 6.693 3.108 5.817 3.347 6.614 ...
Calculate Dipeptide Composition:
dipeptide_composition = protpy.dipeptide_composition(protein_seq)
# AA AC AD AE AF ...
# 0.72 0.16 0.48 0.4 0.24 ...
Calculate Tripeptide Composition:
tripeptide_composition = protpy.tripeptide_composition(protein_seq)
# AAA AAC AAD AAE AAF ...
# 1 0 0 2 0 ...
Calculate Pseudo Composition:
pseudo_composition = protpy.pseudo_amino_acid_composition(protein_seq)
#using default parameters: lamda=30, weight=0.05, properties=[]
# PAAC_1 PAAC_2 PAAC_3 PAAC_4 PAAC_5 ...
# 0.127 0.059 0.111 0.064 0.126 ...
Calculate Amphiphilic Composition:
amphiphilic_composition = protpy.amphiphilic_amino_acid_composition(protein_seq)
#using default parameters: lamda=30, weight=0.5, properties=[hydrophobicity_, hydrophilicity_]
# APAAC_1 APAAC_2 APAAC_3 APAAC_4 APAAC_5 ...
# 6.06 2.814 5.267 3.03 5.988 ...
Calculate MoreauBroto Autocorrelation:
moreaubroto_autocorrelation = protpy.moreaubroto_autocorrelation(protein_seq)
#using default parameters: lag=30, properties=["CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101", "BIGC670101", "CHAM810101", "DAYM780201"], normalize=True
# MBAuto_CIDH920105_1 MBAuto_CIDH920105_2 MBAuto_CIDH920105_3 MBAuto_CIDH920105_4 MBAuto_CIDH920105_5 ...
# -0.052 -0.104 -0.156 -0.208 0.246 ...
Calculate Moran Autocorrelation:
moran_autocorrelation = protpy.moran_autocorrelation(protein_seq)
#using default parameters: lag=30, properties=["CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101", "BIGC670101", "CHAM810101", "DAYM780201"], normalize=True
# MAuto_CIDH920105_1 MAuto_CIDH920105_2 MAuto_CIDH920105_3 MAuto_CIDH920105_4 MAuto_CIDH920105_5 ...
# -0.07786 -0.07879 -0.07906 -0.08001 0.14911 ...
Calculate Geary Autocorrelation:
geary_autocorrelation = protpy.geary_autocorrelation(protein_seq)
#using default parameters: lag=30, properties=["CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101", "BIGC670101", "CHAM810101", "DAYM780201"], normalize=True
# GAuto_CIDH920105_1 GAuto_CIDH920105_2 GAuto_CIDH920105_3 GAuto_CIDH920105_4 GAuto_CIDH920105_5 ...
# 1.057 1.077 1.04 1.02 1.013 ...
Calculate Conjoint Triad:
conjoint_triad = protpy.conjoint_triad(protein_seq)
# 111 112 113 114 115 ...
# 7 17 11 3 6 ...
Calculate CTD:
ctd = protpy.ctd(protein_seq)
#using default parameters: property="hydrophobicity", all_ctd=True
# hydrophobicity_CTD_C_01 hydrophobicity_CTD_C_02 hydrophobicity_CTD_C_03 normalized_vdwv_CTD_C_01 ...
# 0.279 0.386 0.335 0.389 ...
Calculate Sequence Order Coupling Number (SOCN):
socn = protpy.sequence_order_coupling_number_(protein_seq)
#using default parameters: d=1, distance_matrix="schneider-wrede"
#401.387
Calculate all SOCN's per distance matrix:
#using default parameters: lag=30, distance_matrix="schneider-wrede"
socn_all = protpy.sequence_order_coupling_number(protein_seq)
# SOCN_SW1 SOCN_SW2 SOCN_SW3 SOCN_SW4 SOCN_SW5 ...
# 401.387 409.243 376.946 393.042 396.196 ...
#using custom parameters: lag=10, distance_matrix="grantham"
socn_all = protpy.sequence_order_coupling_number(protein_seq, lag=10, distance_matrix="grantham")
# SOCN_Grant1 SOCN_Grant_2 SOCN_Grant_3 SOCN_Grant_4 SOCN_Grant_5 ...
# 399.125 402.153 387.820 393.111 409.096 ...
Calculate Quasi Sequence Order (QSO):
#using default parameters: lag=30, weight=0.1, distance_matrix="schneider-wrede"
qso = protpy.quasi_sequence_order(protein_seq)
# QSO_SW1 QSO_SW2 QSO_SW3 QSO_SW4 QSO_SW5 ...
# 0.005692 0.002643 0.004947 0.002846 0.005625 ...
#using custom parameters: lag=10, weight=0.2, distance_matrix="grantham"
qso = protpy.quasi_sequence_order(protein_seq, lag=10, weight=0.2, distance_matrix="grantham")
# QSO_Grant1 QSO_Grant2 QSO_Grant3 QSO_Grant4 QSO_Grant5 ...
# 0.123287 0.079967 0.04332 0.039983 0.013332 ...
/tests
- unit and integration tests forprotpy
package./protpy
- source code and all required external data files for package./docs
-protpy
documentation.
To run all tests, from the main protpy
folder run:
python3 -m unittest discover tests -v
-v: verbose output flag
If you have any questions or comments, please contact [email protected] or raise an issue on the Issues tab.
[1]: Mckenna, A., & Dubey, S. (2022). Machine learning based predictive model for the analysis of sequence activity relationships using protein spectra and protein descriptors. Journal of Biomedical Informatics, 128(104016), 104016. https://doi.org/10.1016/j.jbi.2022.104016
[2]: Shuichi Kawashima, Minoru Kanehisa, AAindex: Amino Acid index database, Nucleic Acids Research, Volume 28, Issue 1, 1 January 2000, Page 374, https://doi.org/10.1093/nar/28.1.374
[3]: Dong, J., Yao, ZJ., Zhang, L. et al. PyBioMed: a python library for various molecular representations of chemicals, proteins and DNAs and their interactions. J Cheminform 10, 16 (2018). https://doi.org/10.1186/s13321-018-0270-2
[4]: Reczko, M. and Bohr, H. (1994) The DEF data base of sequence based protein
fold class predictions. Nucleic Acids Res, 22, 3616-3619.
[5]: Hua, S. and Sun, Z. (2001) Support vector machine approach for protein
subcellular localization prediction. Bioinformatics, 17, 721-728.
[6]: Broto P, Moreau G, Vandicke C: Molecular structures: perception,
autocorrelation descriptor and SAR studies. Eur J Med Chem 1984, 19: 71β78.
[7]: Ong, S.A., Lin, H.H., Chen, Y.Z. et al. Efficacy of different protein
descriptors in predicting protein functional families. BMC Bioinformatics
8, 300 (2007). https://doi.org/10.1186/1471-2105-8-300
[8]: Inna Dubchak, Ilya Muchink, Stephen R.Holbrook and Sung-Hou Kim. Prediction
of protein folding class using global description of amino acid sequence.
Proc.Natl. Acad.Sci.USA, 1995, 92, 8700-8704.
[9]: Juwen Shen, Jian Zhang, Xiaomin Luo, Weiliang Zhu, Kunqian Yu, Kaixian Chen,
Yixue Li, Huanliang Jiang. Predicting proten-protein interactions based only
on sequences inforamtion. PNAS. 2007 (104) 4337-4341.
[10]: Kuo-Chen Chou. Prediction of Protein Subcellar Locations by Incorporating
Quasi-Sequence-Order Effect. Biochemical and Biophysical Research
Communications 2000, 278, 477-483.
[11]: Kuo-Chen Chou. Prediction of Protein Cellular Attributes Using
Pseudo-Amino Acid Composition. PROTEINS: Structure, Function, and
Genetics, 2001, 43: 246-255.
[12]: Kuo-Chen Chou. Using amphiphilic pseudo amino acid composition to predict enzyme
subfamily classes. Bioinformatics, 2005,21,10-19.