-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy patheval_svm_feature_extract.py
executable file
·130 lines (109 loc) · 4.77 KB
/
eval_svm_feature_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""The functions for VCLR linear evaluation (extract feature of videos)
Code partially borrowed from
https://github.com/YihengZhang-CV/SeCo-Sequence-Contrastive-Learning/blob/main/eval_svm_feature_extract.py.
MIT License
Copyright (c) 2020 YihengZhang-CV
"""
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.distributed as dist
import torchvision.transforms as transforms
from dataset import build_dataset
from models.resnet_mlp import resnet50
from utils.logger import setup_logger
from utils.util import load_pretrained
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
import os
import argparse
import json
import numpy as np
def parse_option():
parser = argparse.ArgumentParser('svm eval')
# data
parser.add_argument('--data_dir', type=str, required=True, help='root director of dataset')
parser.add_argument('--dataset', type=str, default='KineticsClipFolderDatasetMultiFrames', help='dataset to training')
parser.add_argument('--datasplit', type=str, default='train')
parser.add_argument('--datasamplenum', type=int, default=30)
# aug
parser.add_argument('--resize', type=int, default=0)
parser.add_argument('--cropsize', type=int, default=224)
# io
parser.add_argument('--pretrained_model', type=str, required=True, help="pretrained model path")
parser.add_argument('--output_dir', type=str, default='./eval_output', help='output director')
# msic
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
args = parser.parse_args()
return args
def get_loader(args):
val_transform_list = []
if args.resize > 0:
val_transform_list.append(transforms.Resize(args.resize))
val_transform_list.append(transforms.CenterCrop(args.cropsize))
val_transform_list.append(transforms.ToTensor())
val_transform_list.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
val_transform = transforms.Compose(val_transform_list)
clipdataset = build_dataset(
dataset=args.dataset,
root=args.data_dir,
split=args.datasplit,
transform=val_transform,
sample_num=args.datasamplenum,
)
dataloader = DataLoader(clipdataset,
batch_size=1,
num_workers=8,
sampler=DistributedSampler(clipdataset, shuffle=False),
shuffle=False,
pin_memory=True,
drop_last=False)
return dataloader, len(clipdataset)
def main(args):
data_loader, total_num = get_loader(args)
logger.info('using data: {}'.format(len(data_loader)))
model_config_dict = dict(
num_classes=128,
mlp=True,
intra_out=True,
order_out=True,
tsn_out=True,
)
model = resnet50(**model_config_dict).cuda()
model = DistributedDataParallel(model, device_ids=[args.local_rank])
load_pretrained(args, model)
model.eval()
logger.info('model init done')
# all_feat = np.zeros([len(data_loader), 2048], dtype=np.float32)
all_feat = []
all_feat_cls = np.zeros([len(data_loader)], dtype=np.int32)
with torch.no_grad():
for idx, (data, cls) in enumerate(data_loader):
logger.info('{}/{}'.format(idx, len(data_loader)))
data_size = data.size()
if data_size[1] != 3:
data = data.view((-1, 3, data_size[-2], data_size[-1]))
data = data.cuda()
feat = model(data, layer=6).squeeze()
feat_avg = torch.mean(feat, dim=0).view(-1)
all_feat.append(feat_avg.data.cpu().numpy())
all_feat_cls[idx] = cls.item()
all_feat = np.stack(all_feat, axis=0)
np.save(os.path.join(args.output_dir, 'feature_{}_{}.npy'.format(args.datasplit, args.local_rank)), all_feat)
np.save(os.path.join(args.output_dir, 'feature_{}_cls_{}.npy'.format(args.datasplit, args.local_rank)), all_feat_cls)
if dist.get_rank() == 0:
np.save(os.path.join(args.output_dir, 'vid_num_{}.npy'.format(args.datasplit)), np.array([total_num]))
if __name__ == '__main__':
args = parse_option()
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
cudnn.benchmark = True
os.makedirs(args.output_dir, exist_ok=True)
logger = setup_logger(output=args.output_dir, distributed_rank=dist.get_rank(), name="seco")
if dist.get_rank() == 0:
path = os.path.join(args.output_dir, "config.json")
with open(path, "w") as f:
json.dump(vars(args), f, indent=2)
logger.info("Full config saved to {}".format(path))
main(args)