-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathnautilus
executable file
·353 lines (321 loc) · 12.7 KB
/
nautilus
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#!/usr/bin/env python
# This program automates the running of nemo, which otherwise requires tedious
# patch-dependent configuration
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("maps_and_divs", nargs="+", help="map map map ... div div div if not transpose, else interleaved")
parser.add_argument("-T", "--transpose", action="store_true")
parser.add_argument("-d", "--dry-run", action="store_true")
parser.add_argument("-s", "--serial", action="store_true")
args = parser.parse_args()
import numpy as np, os, re, sys, shutil, subprocess
from enlib import utils, enmap, mpi
from scipy import optimize
comm = mpi.COMM_WORLD
afreqs = {
"pa1":["f150"],"pa2":["f150"],"pa3":["f090","f150"],
"pa4":["f150","f220"],"pa5":["f090","f150"],"pa6":["f090","f150"],
}
sarrs = {
"s13":["pa1"],"s14":["pa1","pa2"],"s15":["pa1","pa2","pa3"],
"s16":["pa2","pa3","pa4"],"s17":["pa4","pa5","pa6"],"s18":["pa4","pa5","pa6"],
}
ffreqs = {"f090": 97.0, "f150": 148.0, "f220": 220.}
# This should probably not be hardcoded here, but inferred from the mapdata configA
def get_beam(season, array, freq):
#beam_fmt = "/home/snaess/project/actpol/depot/sigurdkn/beam/marius/mr3_{season}_{array}_{freq}_nohwp_night_beam_profile_instant_2018022.txt"
#beam_fmt = "/project/r/rbond/sigurdkn/actpol/mapdata/depot/sigurdkn/beam/marius/mr3_{season}_{array}_{freq}_nohwp_night_beam_profile_instant_2018022.txt"
#beam_fmt = "/home/r/rbond/sigurdkn/project/actpol/mapdata/depot/mlungu/beams/180805/mr3_{season}_{array}_{freq}_nohwp_night_beam_profile_jitter_180805.txt"
if int(array[-1:]) < 4:
return "/home/snaess/project/actpol/depot/sigurdkn/beam/180805/mr3_{season}_{array}_{freq}_nohwp_night_beam_profile_jitter_180805.txt".format(season=season, array=array, freq=freq)
else:
return "/home/snaess/project/actpol/depot/sigurdkn/beam/171227/beam_profile_171227_{array}_{freq}_{season}_instant.txt".format(season=season, array=array, freq=freq)
aseas = {}
for season in sarrs:
for array in sarrs[season]:
if array not in aseas: aseas[array] = []
aseas[array].append(season)
nmap = len(args.maps_and_divs)//2
if not args.transpose:
imaps = args.maps_and_divs[:nmap]
idivs = args.maps_and_divs[nmap:]
else:
imaps = args.maps_and_divs[0::2]
idivs = args.maps_and_divs[1::2]
for ind in range(comm.rank, len(imaps), comm.size):
imapfile, idivfile = imaps[ind], idivs[ind]
print imapfile
# Parse the file name looking for array and season information. We need all this
# just to infer which beam to use!
season, array, freq = None, None, None
toks = ".".join(os.path.basename(imapfile).split(".")[:-1]).split("_")
for tok in toks:
m = re.match(r"(pa\d)", tok)
if m and not array: array = m.group(1)
m = re.match(r"(s\d\d)", tok)
if m and not season: season = m.group(1)
m = re.match(r"\+?(f\d\d\d)", tok)
if m and not freq: freq = m.group(1)
if array is None:
print "Could not infer array from '%s'. Skipping" % imapfile
continue
if season is None:
if array in aseas: season = aseas[array][0]
else:
print "Could not infer season from '%s'. Skipping" % imapfile
continue
if freq is None:
if array in afreqs: freq = afreqs[array][0]
else:
print "Could not infer freq from '%s'. Skipping" % imapfile
continue
beam = get_beam(season, array, freq)
def find_largest_rectangle(mask, p0):
def calc_chisq(x):
box = utils.nint(x.reshape(2,2))
if np.any(box[1] < box[0]): return np.inf
if np.any(box[0] < 0): return np.inf
if np.any(box[1] >= mask.shape): return np.inf
h, w = box[1]-box[0]
area = h*w
bad = np.sum(~mask[box[0,0]:box[1,0],box[0,1]:box[1,1]])
chisq = -area + 1e6*bad
#print "A %4d %4d %4d %4d %15.7e" % (x[0],x[1],x[2],x[3],chisq)
return chisq
p0 = np.array(p0)
x0 = np.array([p0,p0+1],float).reshape(-1)
# Powell sometimes gets stuck here. This seems like a case where simplex is
# better.
x = optimize.fmin(calc_chisq, x0, disp=False)
return utils.nint(x.reshape(2,2))
# Automatically find the reference region by finding the biggest
# rectangle that has no holes. We base this on a low-resolution
# version of the map.
shape, wcs = enmap.read_map_geometry(idivfile)
down= 1
div = enmap.read_fits(idivfile, sel=(Ellipsis, slice(None,None,down), slice(None, None, down))).preflat[0]
area= div.area()
if area < np.pi:
# Not the huge advanced act patch, which must be handled separately
p0 = np.array(div.shape[-2:])//2
ref = 0
for i in range(3):
ref = np.median(div[div>ref/8])
mask = div>ref/5
pixbox = find_largest_rectangle(mask, p0)
box = div.pix2sky(pixbox.T).T/utils.degree
# Shrink box to whole degrees to make nemo happy
box[0] = np.ceil(box[0])
box[1] = np.floor(box[1])
dec1, ra1, dec2, ra2 = box.reshape(-1)
# If the box is too tall, switch to dec slice mode
if dec2-dec1 > 30:
dec1 = "'numDecSteps'"
dec2 = 8
print ra1, ra2, dec1, dec2
# Estimate memory usage. Assume double precision and 16 copies
mem = shape[-2]*shape[-1]*2*24*8/1024.**3
print "estimated memory: %.1fG" % mem
# Generate the nemo parameter string
nemo_params = r"""# Nautilus auto-generated parameters for nemo
unfilteredMaps: [{
mapFileName: "%(map)s",
weightsFileName: "%(div)s",
obsFreqGHz: %(freq)s, units: 'uK',
beamFileName: "%(beam)s",
addNoise: null,
pointSourceRemoval: null,
pointSourceMask: null,
surveyMask: null
}]
# Detection options
thresholdSigma: 3.5
minObjPix: 1
rejectBorder: 0 #would be nice to calibrate this.
objIdent: 'nemo-'
longNames: False
catalogCuts: ['SNR > 3.5']
findCenterOfMass: True
useInterpolator: True
useMPI: False
# Photometry options
photometryOptions: {photFilter: 'Beam'}
# tileDeck options - cut-up each map into smaller sections, store in a multi-extension .fits file
makeTileDeck: False
tileOverlapDeg: 1.0
mapFilters: [{
label: "Beam", class: "BeamRealSpaceMatchedFilter",
params: {noiseParams: {method: "max(dataMap,CMB)",
matchedFilterClass: 'BeamMatchedFilter',
RADecSection: [%(ra1)s, %(ra2)s, %(dec1)s, %(dec2)s],
kernelMaxArcmin: 7.,
symmetrize: False,
noiseGridArcmin: 20.,
saveHighPassMap: False,
saveRMSMap: False},
bckSub: True,
outputUnits: 'uK',
},
}]
# Set this to True to generate a sky sim (with noise), run all the filters over it, and measure contamination
# Set numSkySims to number required - we need to average over many as results vary a fair bit
estimateContaminationFromSkySim: False
numSkySims: 1
# Set this to True to estimate contamination by running cluster finder over inverted maps
# This is sensitive to how well point source masking is done
estimateContaminationFromInvertedMaps: False
""" % {
"map":os.path.abspath(imapfile), "div":os.path.abspath(idivfile), "freq":ffreqs[freq],
"dec1":dec1, "ra1":ra1, "dec2":dec2, "ra2":ra2, "beam":beam}
ntask = 1
else:
mem = 100.0
nemo_params = r"""
# Nautilus auto-generated parameters for nemo
unfilteredMaps: [{
mapFileName: "%(map)s",
weightsFileName: "%(div)s",
obsFreqGHz: %(freq)s, units: 'uK',
beamFileName: "%(beam)s",
addNoise: null,
pointSourceRemoval: null,
pointSourceMask: null,
surveyMask: null,
}]
# MPI?
useMPI: True
# tileDeck options - cut-up each map into smaller sections, store in a multi-extension .fits file
makeTileDeck: True
tileOverlapDeg: 1.0
# User-defined tiles
# These will automatically be expanded by tileOverlapDeg, i.e., don't need to handle overlaps here
tileDefinitions: [
{extName: '0_0', RADecSection: [122.7, 103.8, -61., -51.]},
{extName: '0_1', RADecSection: [103.8, 66.6, -61., -51.]},
{extName: '0_2', RADecSection: [66.6, 14.3, -61., -51.]},
{extName: '0_3', RADecSection: [14.3, 321., -61., -51.]},
{extName: '0_4', RADecSection: [321., 258., -61., -51.]},
{extName: '1_0', RADecSection: [117., 67.3, -51., -41.]},
{extName: '1_1', RADecSection: [67.3, 13.3, -51., -41.]},
{extName: '1_2', RADecSection: [13.3, 334.2, -51., -41.]},
{extName: '1_3', RADecSection: [334.2, 300., -51., -41.]},
{extName: '1_4', RADecSection: [300., 264., -51., -41.]},
{extName: '2_0', RADecSection: [110., 68.2, -41., -31.]},
{extName: '2_1', RADecSection: [68.2, 15.5, -41., -31.]},
{extName: '2_2', RADecSection: [15.5, 334.2, -41., -31.]},
{extName: '2_3', RADecSection: [334.2, 300., -41., -31.]},
{extName: '2_4', RADecSection: [300., 266., -41., -31.]},
{extName: '3_0', RADecSection: [110., 45., -31., -21.]},
{extName: '3_1', RADecSection: [45., 345., -31., -21.]},
{extName: '3_2', RADecSection: [345., 276., -31., -21.]},
{extName: '4_0', RADecSection: [102., 45., -21., -11.]},
{extName: '4_1', RADecSection: [45., 345., -21., -11.]},
{extName: '4_2', RADecSection: [345., 281., -21., -11.]},
{extName: '5_0', RADecSection: [86., 45., -11., 5.5]},
{extName: '5_1', RADecSection: [45., 345., -11., 5.5]},
{extName: '5_2', RADecSection: [345., 291., -11., 5.5]},
{extName: '5A_0', RADecSection: [179.9, 105., -6., 5.5]},
{extName: '5A_1', RADecSection: [262., 217., -6., 5.5]},
{extName: '5A_2', RADecSection: [217., 180.1, -6., 5.5]},
{extName: '6_0', RADecSection: [179.9, 100., 5.5, 22.]},
{extName: '6_1', RADecSection: [81., 6., 5.5, 22.]},
{extName: '6_2', RADecSection: [6., 298., 5.5, 22.]},
{extName: '6_3', RADecSection: [269., 217., 5.5, 22.]},
{extName: '6_4', RADecSection: [217., 180.1, 5.5, 22.]},
]
# Corresponding regions in tiles to use for noise part of matched filter
# IF these are modified, tileDeck files will need to be re-made (delete them and rerun nemo)
# Format for each entry: extName: [RAMin, RAMax, decMin, decMax]
tileNoiseRegions: {
'0_0': [111., 103., -59., -52.],
'0_1': [97., 73., -59., -52.],
'0_2': [61., 45., -59., -52.],
'0_3': [5., 350., -59., -52.],
'0_4': [318., 300., -59., -52.],
'1_0': [107., 90., -49., -42.],
'1_1': [34., 16., -49., -42.],
'1_2': [10., 352., -49., -42.],
'1_3': [332., 315., -49., -42.],
'1_4': [298., 280., -49., -42.],
'2_0': [104., 88., -40., -32.],
'2_1': [34., 16., -40., -32.],
'2_2': [10., 352., -41., -33.],
'2_3': [332., 315., -40., -32.],
'2_4': [298., 280., -40., -32.],
'3_0': [85., 60., -30., -22.],
'3_1': [34., 16., -30., -22.],
'3_2': [320., 305., -30., -22.],
'4_0': [84., 55., -20., -12.],
'4_1': [30., 10., -20., -12.],
'4_2': [315., 295., -20., -12.],
'5_0': [77., 57., -5., 4.],
'5_1': [32.3, 38.2, -7.5, -2.5],
'5_2': [320., 300., -7., 2.],
'5A_0': [170., 140., -4., 4.],
'5A_1': [234., 218., -4., 2.],
'5A_2': [216., 200., -4., 2.],
'6_0': [150., 130., 10., 18.],
'6_1': [30., 10., 10., 18.],
'6_2': [357., 340., 7., 16.],
'6_3': [236., 218., 7., 16.],
'6_4': [215., 195., 7., 16.],
}
# Detection options
thresholdSigma: 3.5
minObjPix: 1
rejectBorder: 0 #would be nice to calibrate this.
objIdent: 'nemo-'
longNames: False
catalogCuts: ['SNR > 3.5']
findCenterOfMass: True
useInterpolator: True
# Photometry options
photometryOptions: {photFilter: 'Beam'}
mapFilters: [{
label: "Beam", class: "BeamRealSpaceMatchedFilter",
params: {noiseParams: {method: "max(dataMap,CMB)",
matchedFilterClass: 'BeamMatchedFilter',
RADecSection: 'tileNoiseRegions',
kernelMaxArcmin: 7.,
symmetrize: False,
noiseGridArcmin: 20.,
saveHighPassMap: False,
saveRMSMap: False},
bckSub: True,
outputUnits: 'uK'},
}]
# Set this to True to generate a sky sim (with noise), run all the filters over it, and measure contamination
# Set numSkySims to number required - we need to average over many as results vary a fair bit
estimateContaminationFromSkySim: False
numSkySims: 1
# Set this to True to estimate contamination by running cluster finder over inverted maps
# This is sensitive to how well point source masking is done
estimateContaminationFromInvertedMaps: False
""" % {
"map":os.path.abspath(imapfile), "div":os.path.abspath(idivfile), "freq":ffreqs[freq], "beam":beam}
ntask = 10
# Set up nemo work directory
workdir = os.getcwd() + "/" + imapfile + ".work"
#shutil.rmtree(workdir, ignore_errors=True)
utils.mkdir(workdir)
with open(workdir + "/nemo.yml", "w") as f:
f.write(nemo_params)
ofile = ".".join(imapfile.split(".")[:-1]) + "_catalog.txt"
runfile = workdir + "/batch.txt"
# Build a batch script. Nemo is not parallel, so this will just ask for
# one core per node
batch = r"""#!/bin/bash
#SBATCH --nodes 1 --ntasks-per-node=%(ntask)s --cpus-per-task=1 --time=4:00:00
#SBATCH --job-name %(name)s
cd "%(wdir)s"
OMP_NUM_THREADS=1 mpirun -n %(ntask)s nemo nemo.yml
cp nemo/nemo_optimalCatalog.csv "%(ofile)s"
""" % {"name": "_".join(["nemo"]+toks), "wdir": workdir, "ofile": os.path.abspath(ofile),
"mem": mem*1024, "ntask":ntask}
with open(runfile, "w") as f:
f.write(batch)
if not args.dry_run:
if not args.serial:
subprocess.call(["sbatch",runfile])
else:
subprocess.call(["bash",runfile])