-
Notifications
You must be signed in to change notification settings - Fork 3
/
gpubasics.py
125 lines (101 loc) · 4.5 KB
/
gpubasics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
'''
MLP OpenCL backend
@author: [email protected]
@website: https://github.com/alleveenstra/paithon
'''
import pyopencl as cl
import numpy
import numpy.linalg as la
import backprop
import matplotlib.pyplot as plt
import pylab
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
mf = cl.mem_flags
prg = cl.Program(ctx, """
__kernel void evaluate( int inputSize,
int outputSize,
__global const float *input,
__global const float *weight,
__global const float *bias,
__global float *output)
{
int gid = get_global_id(0);
int i;
float sigma = 0;
for (i = 0; i < inputSize; i++) {
sigma = sigma + weight[gid + outputSize * i] * input[i];
}
output[gid] = tanh(sigma + bias[gid]);
}
""").build()
class OpenCLNetworkEvaluator(backprop.DefaultNetworkEvaluator):
def __init__(self, perceptron):
self.perceptron = perceptron
def evaluateNetwork(self):
perceptron = self.perceptron
self.evaluateOnOpenCL(perceptron.inputActivation, perceptron.hiddenWeight, perceptron.hiddenBias, perceptron.hiddenActivation)
self.evaluateOnOpenCL(perceptron.hiddenActivation, perceptron.outputWeight, perceptron.outputBias, perceptron.outputActivation)
return perceptron.outputActivation
def evaluateOnOpenCL(self, input, weight, bias, output):
input_size = numpy.int32(input.size)
output_size = numpy.int32(output.size)
input_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf = input)
weight_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf = weight)
bias_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf = bias)
output_buf = cl.Buffer(ctx, mf.WRITE_ONLY, output.nbytes)
prg.evaluate(queue, output.transpose().shape, None, input_size, output_size, input_buf, weight_buf, bias_buf, output_buf)
cl.enqueue_read_buffer(queue, output_buf, output).wait()
def testSimpleXor():
bp = backprop.MultiLayerPerceptron(2, 4, 1, 0.08, 0, 0)
bp.evaluationFunction = OpenCLNetworkEvaluator(bp)
examples = numpy.matrix([[0, 0], [1, 0], [0, 1], [1, 1]]).astype(numpy.float32)
classes = numpy.matrix([ [1], [-1], [-1], [1] ]).astype(numpy.float32)
errors = bp.train(examples, classes, 400)
print '[0,0] -> %.2f' % bp.evaluateNetwork([0, 0])[0, 0]
print '[1,0] -> %.2f' % bp.evaluateNetwork([1, 0])[0, 0]
print '[0,1] -> %.2f' % bp.evaluateNetwork([0, 1])[0, 0]
print '[1,1] -> %.2f' % bp.evaluateNetwork([1, 1])[0, 0]
plt.plot(range(len(errors)), errors)
plt.show()
def readImage(filename, dist_width = 0.3):
image = numpy.reshape(pylab.imread(filename), 64 * 64)
image = ((image - numpy.mean(image)) / numpy.std(image)) * dist_width
return image
def showImages(before, after, n_images = 1, n_image = 1):
before = numpy.matrix(numpy.reshape(before, (64, 64)))
after = numpy.matrix(numpy.reshape(after, (64, 64)))
if n_image == 1:
plt.figure(1)
plt.subplot(n_images / 2, 4, 1 + (n_image - 1) * 2)
plt.imshow(before, origin = 'lower')
plt.gray()
plt.subplot(n_images / 2, 4, 1 + (n_image - 1) * 2 + 1)
plt.imshow(after, origin = 'lower')
plt.gray()
if n_images == n_image:
plt.show()
def testImage():
bp = backprop.MultiLayerPerceptron(64 * 64, 4, 64 * 64, 0.08)
bp.noiser = backprop.SaltPepperNoiser()
bp.evaluationFunction = OpenCLNetworkEvaluator(bp)
c1 = readImage('lfwcrop_grey/faces/Alejandro_Toledo_0003.pgm')
c2 = readImage('lfwcrop_grey/faces/Arminio_Fraga_0005.pgm')
c3 = readImage('lfwcrop_grey/faces/Bill_Graham_0008.pgm')
c4 = readImage('lfwcrop_grey/faces/Costas_Simitis_0006.pgm')
c5 = readImage('lfwcrop_grey/faces/Dennis_Kucinich_0004.pgm')
c6 = readImage('lfwcrop_grey/faces/Ernie_Grunfeld_0001.pgm')
c7 = readImage('lfwcrop_grey/faces/Harry_Schmidt_0001.pgm')
c8 = readImage('lfwcrop_grey/faces/James_Kelly_0004.pgm')
examples = numpy.matrix([c1, c2, c3, c4, c5, c6, c7, c8])
errors = bp.train(examples, examples, 100)
index = 1
for image in (c1, c2, c3, c4, c5, c6, c7, c8):
image = bp.noiser.addNoise(image)
showImages(image, bp.evaluateNetwork(image), 8, index)
index += 1
plt.figure(2)
plt.plot(range(len(errors)), errors)
plt.show()
#testSimpleXor()
testImage()