-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathguliloss.py
143 lines (110 loc) · 4.57 KB
/
guliloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
'''
implement the A-softmax loss from
<SphereFace: Deep Hypersphere Embedding for Face Recognition>
@author: Yuan Yang
@date: 2017.05.25
'''
import math
from easydict import EasyDict as edict
from torch.nn import init
from torch.nn.modules.module import Module
from torch.nn.parameter import Parameter
from torch.autograd import Variable
from torch.autograd import Function
import torch
import numpy as np
class guli_fun(Function):
'''
actual computing of a-softmax loss happens here
'''
def __init__(self, beta=10.0):
'''
get params from SphereLoss module
'''
self.c_map = list()
self.k_map = list()
self.margin = 4
# look up table for C_m_n and cos_mt
c_m_n = lambda m, n: math.factorial(n) / math.factorial(m) / math.factorial(n-m)
for i in range(self.margin+1):
self.c_map.append(c_m_n(i, self.margin))
self.k_map.append(math.cos(i*math.pi / self.margin))
# save them in forward operation, used in backward
self.k = None
self.cos_t = None
self.cos_mt = None
self.x_norm = None
self.is_cuda = False
# eps to avoid nan in division
self.eps = 1e-6
self.beta = beta
def find_k(self, cos_t):
'''
find k for cos(theta)
cos_t is a scalar
'''
# for numeric issue
eps = 1e-5
le = lambda x, y: x < y or abs(x-y) < eps
for i in range(self.margin):
if le(self.k_map[i+1], cos_t) and le(cos_t, self.k_map[i]):
return i
raise ValueError('can not find k for cos_t = %f'%clamp_cos)
def calc_cos_mt(self, cos_t):
'''
calculate cos(m*theta)
cos_t is vector
'''
clamp_cos = torch.clamp(cos_t, -1.0, 1.0)
cos_mt = torch.cos(self.margin*torch.acos(clamp_cos))
return cos_mt
def forward(self, input, weight, label):
self.is_cuda = input.is_cuda
self.save_for_backward(input, label)
self.weight = weight
# original Linear operation
out = torch.mm(input, self.weight.t()) # n x self.out_f
self.x_norm = torch.norm(input, 2, 1)
x_dot_w_yi = torch.gather(out, 1, label.view(label.size(0), 1))
x_dot_w_yi = x_dot_w_yi.squeeze()
self.cos_t = x_dot_w_yi/(self.x_norm + self.eps)
self.cos_t = torch.clamp(self.cos_t, -1.0, 1.0)
self.k = torch.LongTensor(self.cos_t.size())
for i in range(label.size(0)):
self.k[i] = self.find_k(self.cos_t[i])
if self.is_cuda:
self.k = self.k.cuda()
self.cos_mt = self.calc_cos_mt(self.cos_t)
indictor = 1-2*(self.k%2)
f_new = ((indictor.float()*self.cos_mt - 2*self.k.float())*self.x_norm).unsqueeze(1)
for i in range(label.size(0)):
out[i, label[i, 0]] = (self.beta*out[i, label[i, 0]]+ f_new[i, 0]) / \
(1+self.beta)
return out
def backward(self, grad_output):
input, label = self.saved_tensors
indictor = 1-2*(self.k%2)
input_grad = torch.mm(grad_output, self.weight)
# d_four_x_coeff: d_cos4x/dx = (32*cos3x^3-16cosx)* dcosx_dx
d_four_x_coeff = (32*torch.pow(self.cos_t, 3) - 16*self.cos_t)
w_choose = self.weight[label.view(-1)]
dcos_dx = w_choose/(self.x_norm+self.eps).unsqueeze(1).expand_as(w_choose) - \
input*(self.cos_t/(self.x_norm*self.x_norm + self.eps)).unsqueeze(1).expand_as(input)
coeff_w = indictor.float()*d_four_x_coeff
coeff_x = ( indictor.float()*self.cos_mt-2*self.k.float()-indictor.float()*d_four_x_coeff*self.cos_t) / \
(self.x_norm + self.eps )
# norm the coeff_w
total_norm = torch.sqrt(torch.pow(coeff_w, 2) + torch.pow(coeff_x, 2)) + self.eps
coeff_w = coeff_w / total_norm
coeff_x = coeff_x / total_norm
df_dx = coeff_w.unsqueeze(1).expand_as(w_choose)*w_choose + \
coeff_x.unsqueeze(1).expand_as(input)*input
alpha = self.beta/(1+self.beta)
grad_scale = torch.gather(grad_output, 1, label.view(label.size(0), 1))
grad_scale = grad_scale.squeeze()
input_grad += (1.0-alpha)*grad_scale.unsqueeze(1).expand_as(df_dx)*(df_dx-w_choose)
# update weight using guli's method
for i in range(input.size(0)):
x_norm = input[i, :] /( self.x_norm[i] + self.eps )
self.weight[label[i], :] += x_norm
return input_grad, None, None