-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhybrid.py
executable file
·245 lines (189 loc) · 7.54 KB
/
hybrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import cv2
import numpy as np
import os
import argparse
CONTEXT_SETTINGS = dict(help_option_names=["-h", "--help"])
def convolution(img, kernel):
""" This function executes the convolution between `img` and `kernel`.
"""
print("[{}]\tRunning convolution...\n".format(img))
# Load the image.
image = cv2.imread(img)
# Flip template before convolution.
kernel = cv2.flip(kernel, -1)
# Get size of image and kernel. 3rd value of shape is colour channel.
(image_h, image_w) = image.shape[:2]
(kernel_h, kernel_w) = kernel.shape[:2]
(pad_h, pad_w) = (kernel_h // 2, kernel_w // 2)
# Create image to write to.
output = np.zeros(image.shape)
# Slide kernel across every pixel.
for y in range(pad_h, image_h - pad_h):
for x in range(pad_w, image_w - pad_w):
# If coloured, loop for colours.
for colour in range(image.shape[2]):
# Get center pixel.
center = image[
y - pad_h : y + pad_h + 1, x - pad_w : x + pad_w + 1, colour
]
# Perform convolution and map value to [0, 255].
# Write back value to output image.
output[y, x, colour] = (center * kernel).sum() / 255
# Return the result of the convolution.
return output
def fourier(img, kernel):
""" Compute convolution between `img` and `kernel` using numpy's FFT.
"""
# Load the image.
image = cv2.imread(img)
# Get size of image and kernel.
(image_h, image_w) = image.shape[:2]
(kernel_h, kernel_w) = kernel.shape[:2]
# Apply padding to the kernel.
padded_kernel = np.zeros(image.shape[:2])
start_h = (image_h - kernel_h) // 2
start_w = (image_w - kernel_w) // 2
padded_kernel[start_h : start_h + kernel_h, start_w : start_w + kernel_w] = kernel
# Create image to write to.
output = np.zeros(image.shape)
# Run FFT on all 3 channels.
for colour in range(3):
Fi = np.fft.fft2(image[:, :, colour])
Fk = np.fft.fft2(padded_kernel)
# Inverse fourier.
output[:, :, colour] = np.fft.fftshift(np.fft.ifft2(Fi * Fk)) / 255
# Return the result of convolution.
return output
def gaussian_blur(image, sigma, fourier_flag):
""" Builds a Gaussian kernel used to perform the LPF on an image.
"""
print("[{}]\tCalculating Gaussian kernel...".format(image))
# Calculate size of filter.
size = 8 * sigma + 1
if not size % 2:
size = size + 1
center = size // 2
kernel = np.zeros((size, size))
# Generate Gaussian blur.
for y in range(size):
for x in range(size):
diff = (y - center) ** 2 + (x - center) ** 2
kernel[y, x] = np.exp(-diff / (2 * sigma ** 2))
kernel = kernel / np.sum(kernel)
if fourier_flag:
return fourier(image, kernel)
else:
return convolution(image, kernel)
def low_pass(image, cutoff, fourier):
""" Generate low pass filter of image.
"""
print("[{}]\tGenerating low pass image...".format(image))
return gaussian_blur(image, cutoff, fourier)
def high_pass(image, cutoff, fourier):
""" Generate high pass filter of image. This is simply the image minus its
low passed result.
"""
print("[{}]\tGenerating high pass image...".format(image))
return (cv2.imread(image) / 255) - low_pass(image, cutoff, fourier)
def hybrid_image(image, cutoff, fourier):
""" Create a hybrid image by summing together the low and high frequency
images.
"""
# Perform low pass filter and export.
low = low_pass(image[0], cutoff[0], fourier)
cv2.imwrite("low.jpg", low * 255)
# Perform high pass filter and export.
high = high_pass(image[1], cutoff[1], fourier)
cv2.imwrite("high.jpg", (high + 0.5) * 255)
print("Creating hybrid image...")
return low + high
def output_vis(image):
""" Display hybrid image comparison for report. Visualisation shows 5 images
reducing in size to simulate viewing the image from a distance.
"""
print("Creating visualisation...")
num = 5 # Number of images to display.
gap = 2 # Gap between images (px).
# Create list of images.
image_list = [image]
max_height = image.shape[0]
max_width = image.shape[1]
# Add images to list and increase max width.
for i in range(1, num):
tmp = cv2.resize(image, (0, 0), fx=0.5 ** i, fy=0.5 ** i)
max_width += tmp.shape[1] + gap
image_list.append(tmp)
# Create space for image stack.
stack = np.ones((max_height, max_width, 3)) * 255
# Add images to stack.
current_x = 0
for img in image_list:
stack[
max_height - img.shape[0] :, current_x : img.shape[1] + current_x, :
] = img
current_x += img.shape[1] + gap
return stack
def mass_hybrid(config):
""" Create hybrid image from two source images. xxxx
"""
# print("hi")
indir = '/Users/aliborji/Desktop/DB/'
outdir = '/Users/aliborji/Desktop/DB/Output/'
folders = ['Banana', 'CustardApple', 'Fig', 'GrannySmith', 'Jackfruit', 'Lemon', 'Pineapple', 'Pomegranate', 'Strawberry', 'Orange']
count = 0
for i1, f1 in enumerate(folders):
for i2, f2 in enumerate(folders):
if f1 == f2:
continue
f1_files = os.listdir(os.path.join(indir, f1))
f2_files = os.listdir(os.path.join(indir, f2))
for file1 in f1_files:
if not file1.endswith('.jpeg'): continue
for file2 in f2_files:
if not file2.endswith('.jpeg'): continue
for cut in range(1,21,3):
hybrid = hybrid_image([os.path.join(indir, f1, file1), os.path.join(indir, f2, file2)], [cut, cut], config.fourier)
count += 1
# fname = '_'.join([file1[:-5], file2[:-5], str(cut), str(count), '.jpg'])
fname = '_'.join([str(i1), str(i2), str(cut), str(count), '.jpg'])
cv2.imwrite(os.path.join(outdir, fname), hybrid * 255)
def hybrid(config):
""" Create hybrid image from two source images. xxxx
"""
for cut in range(1,21,3):
hybrid = hybrid_image([config.i1, config.i0], [cut, cut], config.fourier)
# import pdb; pdb.set_trace()
if config.visual:
cv2.imwrite('_'+str(cut)+'_'+ config.output, output_vis(hybrid) * 255)
else:
cv2.imwrite('_'+str(cut)+'_'+config.output, hybrid * 255)
for cut in range(1,21,3):
hybrid = hybrid_image([config.i0, config.i1], [cut, cut], config.fourier)
# import pdb; pdb.set_trace()
if config.visual:
cv2.imwrite(str(cut)+'_'+ config.output, output_vis(hybrid) * 255)
else:
cv2.imwrite(str(cut)+'_'+config.output, hybrid * 255)
if __name__ == "__main__":
# print("hi")
parser = argparse.ArgumentParser()
# Hyper-parameters
parser.add_argument('-i0', type=str)
parser.add_argument('-i1', type=str)
parser.add_argument("-o", "--output", default="output.jpg", help="Output file.")
parser.add_argument(
"-c",
"--cutoff",
default=[10,10],
type=int,
help="High/low cutoff frequencies.",
)
parser.add_argument(
"-v", "--visual", action='store_false', help="Generate visualisation."
)
parser.add_argument(
"-f", "--fourier", action='store_false', help="Use fourier convolution."
)
config = parser.parse_args()
# mass_hybrid(config)
hybrid(config)