Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Add cross-device recsys dataset Netflix #281

Merged
merged 5 commits into from
Aug 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion federatedscope/core/auxiliaries/data_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -567,7 +567,8 @@ def get_data(config):
elif config.data.type.lower() == 'vertical_fl_data':
from federatedscope.vertical_fl.dataloader import load_vertical_data
data, modified_config = load_vertical_data(config, generate=True)
elif 'movielens' in config.data.type.lower():
elif 'movielens' in config.data.type.lower(
) or 'netflix' in config.data.type.lower():
from federatedscope.mf.dataloader import load_mf_dataset
data, modified_config = load_mf_dataset(config)
elif '@' in config.data.type.lower():
Expand Down
29 changes: 29 additions & 0 deletions federatedscope/mf/baseline/hfl_fedavg_standalone_on_netflix.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
use_gpu: False
early_stop:
patience: 100
federate:
mode: standalone
total_round_num: 100
client_num: 480189
online_aggr: True
share_local_model: True
sample_client_rate: 0.0001
data:
root: data/
type: HFLNetflix
batch_size: 32
num_workers: 0
model:
type: HMFNet
hidden: 10
train:
local_update_steps: 50
optimizer:
lr: 1.
criterion:
type: MSELoss
trainer:
type: mftrainer
eval:
freq: 100
metrics: []
21 changes: 13 additions & 8 deletions federatedscope/mf/dataloader/dataloader.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,9 @@
"vflmovielens1m": "VFLMovieLens1M",
"vflmovielens10m": "VFLMovieLens10M",
"hflmovielens1m": "HFLMovieLens1M",
"hflmovielens10m": "HFLMovieLens10M"
"hflmovielens10m": "HFLMovieLens10M",
'vflnetflix': "VFLNetflix",
'hflnetflix': "HFLNetflix"
}


Expand All @@ -30,13 +32,16 @@ def load_mf_dataset(config=None):
"""
if config.data.type.lower() in MFDATA_CLASS_DICT:
# Dataset
dataset = getattr(
importlib.import_module("federatedscope.mf.dataset.movielens"),
MFDATA_CLASS_DICT[config.data.type.lower()])(
root=config.data.root,
num_client=config.federate.client_num,
train_portion=config.data.splits[0],
download=True)
if config.data.type.lower() in ['vflnetflix', 'hflnetflix']:
mpath = "federatedscope.mf.dataset.netflix"
else:
mpath = "federatedscope.mf.dataset.movielens"
dataset = getattr(importlib.import_module(mpath),
MFDATA_CLASS_DICT[config.data.type.lower()])(
root=config.data.root,
num_client=config.federate.client_num,
train_portion=config.data.splits[0],
download=True)
else:
raise NotImplementedError("Dataset {} is not implemented.".format(
config.data.type))
Expand Down
41 changes: 16 additions & 25 deletions federatedscope/mf/dataset/movielens.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,19 +77,6 @@ def __init__(self, root, num_client, train_portion=0.9, download=True):
ratings = self._load_meta()
self._split_n_clients_rating(ratings, num_client, 1 - train_portion)

def _split_n_clients_rating(self, ratings: csc_matrix, num_client: int,
test_portion: float):
id_item = np.arange(self.n_item)
shuffle(id_item)
items_per_client = np.array_split(id_item, num_client)
data = dict()
for clientId, items in enumerate(items_per_client):
client_ratings = ratings[:, items]
train_ratings, test_ratings = self._split_train_test_ratings(
client_ratings, test_portion)
data[clientId + 1] = {"train": train_ratings, "test": test_ratings}
self.data = data

def _split_train_test_ratings(self, ratings: csc_matrix,
test_portion: float):
n_ratings = ratings.count_nonzero()
Expand All @@ -109,22 +96,26 @@ def _split_train_test_ratings(self, ratings: csc_matrix,
train_ratings, test_ratings = train.tocsc(), test.tocsc()
return train_ratings, test_ratings

def _read_raw(self):
fpath = os.path.join(self.root, self.base_folder, self.filename,
self.raw_file)
data = pd.read_csv(fpath,
sep="::",
engine="python",
usecols=[0, 1, 2],
names=["userId", "movieId", "rating"],
dtype={
"userId": np.int32,
"movieId": np.int32,
"rating": np.float32
})
return data

def _load_meta(self):
meta_path = os.path.join(self.root, self.base_folder, "ratings.pkl")
if not os.path.exists(meta_path):
logger.info("Processing data into {} parties.")
fpath = os.path.join(self.root, self.base_folder, self.filename,
self.raw_file)
data = pd.read_csv(fpath,
sep="::",
engine="python",
usecols=[0, 1, 2],
names=["userId", "movieId", "rating"],
dtype={
"userId": np.int32,
"movieId": np.int32,
"rating": np.float32
})
data = self._read_raw()
# Map idx
unique_id_item, unique_id_user = np.sort(
data["movieId"].unique()), np.sort(data["userId"].unique())
Expand Down
85 changes: 85 additions & 0 deletions federatedscope/mf/dataset/netflix.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
import os
import tarfile
import logging

import pandas as pd
import numpy as np

from federatedscope.mf.dataset import MovieLensData, HMFDataset, VMFDataset

logger = logging.getLogger(__name__)


class Netflix(MovieLensData):
"""Netflix Prize Dataset
(https://archive.org/download/nf_prize_dataset.tar/nf_prize_dataset.tar.gz)

Netflix Prize consists of approximately 100,000,000 ratings from
480,189 users for 17,770 movies. Each rating in the training dataset
consists of four entries: user, movie, rating date, and rating.
Users and movies are represented by integer IDs, while ratings range
from 1 to 5.
"""
base_folder = 'Netflix'
url = 'https://archive.org/download/nf_prize_dataset.tar' \
'/nf_prize_dataset.tar.gz'
filename = 'download'
zip_md5 = 'a8f23d2d76461211c6b4c0ca6df2547d'
raw_file = 'training_set.tar'
raw_file_md5 = '0098ee8997ffda361a59bc0dd1bdad8b'
mv_names = [f'mv_{str(x).rjust(7, "0")}.txt' for x in range(1, 17771)]

def _extract_raw_file(self, dir_path):
# Extract flag
flag = False
if not os.path.exists(dir_path):
flag = True
else:
for name in self.mv_names:
if not os.path.exists(os.path.join(dir_path, name)):
flag = True
break
if flag:
tar = tarfile.open(
os.path.join(self.root, self.base_folder, self.filename,
self.raw_file))
tar.extractall(
os.path.join(self.root, self.base_folder, self.filename))
tar.close()
return

def _read_raw(self):
dir_path = os.path.join(self.root, self.base_folder, self.filename,
'training_set')
self._extract_raw_file(dir_path)
frames = []
for idx, name in enumerate(self.mv_names):
mv_id = np.int32(idx + 1)
df = pd.read_csv(os.path.join(dir_path, name),
usecols=[0, 1, 2],
names=["userId", "rating", "date"],
dtype={
"userId": np.int32,
"movieId": np.int32,
"rating": np.float32,
"date": str
},
skiprows=1)
df["movieId"] = [mv_id] * len(df)
frames.append(df)
data = pd.concat(frames)
return data


class VFLNetflix(Netflix, VMFDataset):
"""Netflix dataset in HFL setting

"""
pass


class HFLNetflix(Netflix, HMFDataset):
"""Netflix dataset in HFL setting

"""
pass
1 change: 1 addition & 0 deletions federatedscope/mf/model/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ def __init__(self, num_user, num_item, num_hidden):
self.register_parameter('embed_item', self.embed_item)

def forward(self, indices, ratings):
# TODO: do not use all embedding
pred = torch.matmul(self.embed_user, self.embed_item.T)
label = torch.sparse_coo_tensor(indices,
ratings,
Expand Down