diff --git a/python/tvm/relay/op/nn/nn.py b/python/tvm/relay/op/nn/nn.py index 2473aab63314b..c76d5ed371354 100644 --- a/python/tvm/relay/op/nn/nn.py +++ b/python/tvm/relay/op/nn/nn.py @@ -19,6 +19,7 @@ from __future__ import absolute_import as _abs from ...expr import TupleWrapper from . import _make +from .util import get_pad_tuple2d def conv1d(data, @@ -200,8 +201,9 @@ def conv2d(data, strides = (strides, strides) if isinstance(dilation, int): dilation = (dilation, dilation) - if isinstance(padding, int): - padding = (padding, padding) + # TODO enforce 4-way padding in topi/nn/conv2d after #4644 merged + # convert 2-way padding to 4-way padding + padding = get_pad_tuple2d(padding) return _make.conv2d(data, weight, strides, padding, dilation, groups, channels, kernel_size, data_layout, @@ -363,6 +365,8 @@ def conv2d_transpose(data, result : tvm.relay.Expr The computed result. """ + # convert 2-way padding to 4-way padding + padding = get_pad_tuple2d(padding) return _make.conv2d_transpose(data, weight, strides, padding, dilation, groups, channels, kernel_size, data_layout, kernel_layout, out_layout, output_padding, out_dtype) @@ -1758,6 +1762,8 @@ def contrib_conv2d_winograd_without_weight_transform(data, result : tvm.relay.Expr The computed result. """ + # convert 2-way padding to 4-way padding + padding = get_pad_tuple2d(padding) return _make.contrib_conv2d_winograd_without_weight_transform( data, weight, tile_size, strides, padding, dilation, groups, channels, kernel_size, data_layout, @@ -1824,6 +1830,8 @@ def contrib_conv2d_winograd_nnpack_without_weight_transform(data, result : tvm.relay.Expr The computed result. """ + # convert 2-way padding to 4-way padding + padding = get_pad_tuple2d(padding) return _make.contrib_conv2d_winograd_nnpack_without_weight_transform( data, weight, strides, padding, dilation, groups, channels, kernel_size, data_layout, @@ -1891,6 +1899,8 @@ def contrib_conv2d_nchwc(data, result : tvm.relay.Expr The computed result. """ + # convert 2-way padding to 4-way padding + padding = get_pad_tuple2d(padding) return _make.contrib_conv2d_NCHWc(data, kernel, strides, padding, dilation, groups, channels, kernel_size, data_layout, kernel_layout, out_layout, out_dtype) @@ -1956,6 +1966,8 @@ def contrib_depthwise_conv2d_nchwc(data, result : tvm.relay.Expr The computed result. """ + # convert 2-way padding to 4-way padding + padding = get_pad_tuple2d(padding) return _make.contrib_depthwise_conv2d_NCHWc(data, kernel, strides, padding, dilation, groups, channels, kernel_size, data_layout, kernel_layout, out_layout, out_dtype) @@ -2021,6 +2033,8 @@ def contrib_conv2d_nchwc_int8(data, result : tvm.relay.Expr The computed result. """ + # convert 2-way padding to 4-way padding + padding = get_pad_tuple2d(padding) return _make.contrib_conv2d_NCHWc_int8(data, kernel, strides, padding, dilation, groups, channels, kernel_size, data_layout, kernel_layout, out_layout, out_dtype) @@ -2142,6 +2156,8 @@ def deformable_conv2d(data, The computed result. """ + # convert 2-way padding to 4-way padding + padding = get_pad_tuple2d(padding) return _make.deformable_conv2d(data, offset, weight, strides, padding, dilation, deformable_groups, groups, channels, kernel_size, data_layout, kernel_layout, out_layout, out_dtype) @@ -2251,7 +2267,8 @@ def bitserial_conv2d(data, result : tvm.relay.Expr The computed result. """ - + # convert 2-way padding to 4-way padding + padding = get_pad_tuple2d(padding) return _make.bitserial_conv2d(data, weight, strides, padding, channels, kernel_size, activation_bits, weight_bits, data_layout, kernel_layout, pack_dtype, diff --git a/python/tvm/relay/op/nn/util.py b/python/tvm/relay/op/nn/util.py new file mode 100644 index 0000000000000..ba536ad399360 --- /dev/null +++ b/python/tvm/relay/op/nn/util.py @@ -0,0 +1,56 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# pylint: disable=invalid-name, unused-variable +"""NN operator common utilities""" +from __future__ import absolute_import +from .... import container + +def get_pad_tuple2d(padding): + """Common code to get the pad option + Parameters + ---------- + padding : Union[int, Tuple[int, ...]] + Padding size + Returns + ------- + pad_top : int + Padding size on top + pad_left : int + Padding size on left + pad_down : int + Padding size on down. + pad_right : int + Padding size on right. + """ + # compute the padding size + if isinstance(padding, container.Array): + padding = list(padding) + if isinstance(padding, (tuple, list)): + if len(padding) == 2: + pad_h = padding[0] * 2 + pad_w = padding[1] * 2 + elif len(padding) == 4: + return padding[0], padding[1], padding[2], padding[3] + else: + raise ValueError("Size of padding can only be 2 or 4") + elif isinstance(padding, int): + pad_h = pad_w = padding * 2 + else: + raise ValueError("Unknown padding option %s" % padding) + pad_top = (pad_h + 1) // 2 + pad_left = (pad_w + 1) // 2 + return pad_top, pad_left, pad_h - pad_top, pad_w - pad_left diff --git a/tests/python/relay/test_pass_alter_op_layout.py b/tests/python/relay/test_pass_alter_op_layout.py index 3f02e1db625e2..b01e1bbe05044 100644 --- a/tests/python/relay/test_pass_alter_op_layout.py +++ b/tests/python/relay/test_pass_alter_op_layout.py @@ -617,7 +617,7 @@ def expected(): w = relay.var("w", shape=(32, 1, 3, 3)) x = relay.layout_transform(x, "NCHW", "NCHW8c") w = relay.layout_transform(w, "OIHW", "OIHW1i8o") - y = relay.nn.contrib_depthwise_conv2d_nchwc(x, w, padding=(1, 1), channels=32, kernel_size=(3, 3), + y = relay.nn.contrib_depthwise_conv2d_nchwc(x, w, padding=(1, 1, 1, 1), channels=32, kernel_size=(3, 3), groups=32, data_layout="NCHW8c", kernel_layout="OIHW1i8o", out_layout="NCHW8c") y = relay.layout_transform(y, "NCHW8c", "NCHW") diff --git a/tests/python/unittest/test_graph_tuner_core.py b/tests/python/unittest/test_graph_tuner_core.py index 1d8e2efda5b27..32c16e239461b 100644 --- a/tests/python/unittest/test_graph_tuner_core.py +++ b/tests/python/unittest/test_graph_tuner_core.py @@ -50,9 +50,9 @@ def _create_data(target, dshape, dtype, layout): params=params, ops=(relay.op.nn.conv2d,)) wkl_list = [ - create_workload((1, 3, 8, 8), (16, 3, 3, 3), (1, 1), (1, 1), (1, 1), layout, layout, dtype, dtype), - create_workload((1, 16, 8, 8), (32, 16, 1, 1), (1, 1), (0, 0), (1, 1), layout, layout, dtype, dtype), - create_workload((1, 32, 8, 8), (32, 32, 3, 3), (1, 1), (1, 1), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 3, 8, 8), (16, 3, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 16, 8, 8), (32, 16, 1, 1), (1, 1), (0, 0, 0, 0), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 32, 8, 8), (32, 32, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype), ] costs = [0.04, 0.012, 0.03] config_list = [] @@ -279,9 +279,9 @@ def test_many_sub_graphs(): params=params, ops=(relay.op.nn.conv2d,)) wkl_list = [ - create_workload((1, 3, 8, 8), (16, 3, 3, 3), (1, 1), (1, 1), (1, 1), layout, layout, dtype, dtype), - create_workload((1, 16, 8, 8), (32, 16, 1, 1), (1, 1), (0, 0), (1, 1), layout, layout, dtype, dtype), - create_workload((1, 32, 8, 8), (32, 32, 3, 3), (1, 1), (1, 1), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 3, 8, 8), (16, 3, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 16, 8, 8), (32, 16, 1, 1), (1, 1), (0, 0, 0, 0), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 32, 8, 8), (32, 32, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype), ] costs = [0.04, 0.012, 0.03, 0.02, 0.02, 0.045] config_list = [] @@ -392,8 +392,8 @@ def test_tuple(): params=params, ops=(relay.op.nn.conv2d,)) wkl_list = [ - create_workload((1, 5, 32, 32), (2, 5, 3, 3), (1, 1), (1, 1), (1, 1), layout, layout, dtype, dtype), - create_workload((1, 5, 32, 32), (3, 5, 3, 3), (1, 1), (1, 1), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 5, 32, 32), (2, 5, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 5, 32, 32), (3, 5, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype), ] costs = [0.01, 0.012, 0.03, 0.04] config_list = [] @@ -490,9 +490,9 @@ def test_triangle_block(): params=params, ops=(relay.op.nn.conv2d,)) wkl_list = [ - create_workload((1, 3, 8, 8), (16, 3, 3, 3), (1, 1), (1, 1), (1, 1), layout, layout, dtype, dtype), - create_workload((1, 16, 8, 8), (32, 16, 1, 1), (1, 1), (0, 0), (1, 1), layout, layout, dtype, dtype), - create_workload((1, 3, 8, 8), (32, 3, 3, 3), (1, 1), (1, 1), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 3, 8, 8), (16, 3, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 16, 8, 8), (32, 16, 1, 1), (1, 1), (0, 0, 0, 0), (1, 1), layout, layout, dtype, dtype), + create_workload((1, 3, 8, 8), (32, 3, 3, 3), (1, 1), (1, 1, 1, 1), (1, 1), layout, layout, dtype, dtype), ] costs = [0.04, 0.012, 0.03, 0.02, 0.02, 0.045] config_list = [] diff --git a/topi/python/topi/cuda/conv2d.py b/topi/python/topi/cuda/conv2d.py index 21f55643b23b2..21c2cc0604af0 100644 --- a/topi/python/topi/cuda/conv2d.py +++ b/topi/python/topi/cuda/conv2d.py @@ -85,7 +85,8 @@ def conv2d_cuda(cfg, data, kernel, strides, padding, dilation, layout='NCHW', ou stride_h, stride_w = (strides, strides) if isinstance(strides, int) else strides dilation_h, dilation_w = (dilation, dilation) if isinstance(dilation, int) else dilation - if isinstance(padding, (list, tuple)) and len(padding) > 2: + if isinstance(padding, (list, tuple)) and len(padding) == 4 and \ + (padding[0] != padding[2] or padding[1] != padding[3]): raise ValueError("Cudnn doesn't support asymmetric padding.") pt, pl, pb, pr = get_pad_tuple(padding, (KH, KW)) OH = (H + pt + pb - KH) // stride_h + 1