diff --git a/python/tvm/relay/frontend/tflite.py b/python/tvm/relay/frontend/tflite.py index 95d573871156c..7eeb1f52acaa1 100644 --- a/python/tvm/relay/frontend/tflite.py +++ b/python/tvm/relay/frontend/tflite.py @@ -102,6 +102,7 @@ def __init__(self, model, subgraph, exp_tab): 'SUM': self._convert_reduce_sum, 'FULLY_CONNECTED': self.convert_fully_connected, 'PAD': self.convert_pad, + 'MIRROR_PAD': self.convert_mirror_pad, 'PACK': self.convert_pack, 'UNPACK': self.convert_unpack, 'LOGISTIC': self.convert_logistic, @@ -1472,7 +1473,7 @@ def convert_pad(self, op): input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" - # TFLite only support CONSTANT mode and does not support constant_values parameter. + # TFLite PAD only support CONSTANT mode and does not support constant_values parameter. # tensor input_tensor = input_tensors[0] in_expr = self.get_expr(input_tensor.tensor_idx) @@ -1482,10 +1483,48 @@ def convert_pad(self, op): # convert list of lists to tuple of tuples paddings = tuple(tuple(l) for l in pad_list) - # Use default pad_value 0 because TFLite does not support constant_values parameter + # Use default pad_value 0 because TFLite PAD does not support constant_values parameter out = _op.nn.pad(in_expr, paddings) return out + def convert_mirror_pad(self, op): + """Convert TFLite MIRROR_PAD""" + try: + from tflite.Operator import Operator + from tflite.BuiltinOptions import BuiltinOptions + from tflite.MirrorPadOptions import MirrorPadOptions + except ImportError: + raise ImportError("The tflite package must be installed") + + # the quantized form MirrorPad is not yet implemented in TFLite. + if self.is_quantized(op): + raise tvm.error.OpNotImplemented( + 'TFlite quantized MIRROR_PAD operator is not supported yet.') + + assert isinstance(op, Operator) + input_tensors = self.get_input_tensors(op) + assert len(input_tensors) == 2, "input tensors length should be 2" + + # tensor + input_tensor = input_tensors[0] + in_expr = self.get_expr(input_tensor.tensor_idx) + + # paddings + pad_list = self.get_tensor_value(input_tensors[1]) + # convert list of lists to tuple of tuples + paddings = tuple(tuple(l) for l in pad_list) + + assert op.BuiltinOptionsType() == BuiltinOptions.MirrorPadOptions + op_options = op.BuiltinOptions() + mirror_pad_options = MirrorPadOptions() + mirror_pad_options.Init(op_options.Bytes, op_options.Pos) + mode_byte = mirror_pad_options.Mode() + + mode = "REFLECT" if mode_byte == 0 else "SYMMETRIC" + out = _op.nn.mirror_pad(in_expr, paddings, mode) + + return out + def convert_pack(self, op): """Convert TFLite pack""" try: diff --git a/tests/python/frontend/tflite/test_forward.py b/tests/python/frontend/tflite/test_forward.py index a3c582dbb3eab..ad1abc247f7eb 100644 --- a/tests/python/frontend/tflite/test_forward.py +++ b/tests/python/frontend/tflite/test_forward.py @@ -1139,7 +1139,7 @@ def test_forward_squeeze(): # Pad # --- -def _test_pad(data): +def _test_pad(data, mode="CONSTANT"): """ One iteration of PAD """ assert len(data) == 2 @@ -1147,7 +1147,7 @@ def _test_pad(data): # Test with tensor and constant with tf.Graph().as_default(): in_data = [array_ops.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in')] - out = array_ops.pad(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype)) + out = array_ops.pad(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode) compare_tflite_with_tvm([data[0]], ['in:0'], in_data, [out]) @@ -1161,6 +1161,10 @@ def test_forward_pad(): np.array([[1, 1], [2, 2]], dtype=np.int32)]) _test_pad([np.arange(1.0, 4.0, dtype=np.float32).reshape((1, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32)]) + _test_pad([np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), + np.array([[1, 1], [2, 2]], dtype=np.int32)], mode="REFLECT") + _test_pad([np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), + np.array([[1, 1], [2, 2]], dtype=np.int32)], mode="SYMMETRIC") #######################################################################