forked from kundajelab/basepairmodels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
51 lines (49 loc) · 2.45 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from setuptools import setup, find_packages
setup(
name="basepairmodels",
version='0.2.0',
description=("BPNet: toolkit to learn motif synthax from high-resolution functional genomics data"
" using convolutional neural networks"),
author="Zahoor Zafrulla",
author_email="[email protected]",
url="https://github.com/kundajelab/basepairmodels",
packages=find_packages(exclude=["docs", "docs-build"]),
install_requires=["tensorflow-gpu==2.4.1",
"tensorflow-probability==0.12.2", "tqdm", "scikit-learn",
"scipy", "scikit-image", "scikit-learn",
"numpy", "deepdish", "pandas", "matplotlib", "plotly",
"deeptools", "pyfaidx", "deeplift",
"shap @ git+https://github.com/AvantiShri/shap.git",
"mseqgen @ git+https://github.com/kundajelab/mseqgen.git",
"modisco @ https://github.com/Bluedragon137/tfmodisco.git"],
extras_require={"dev": ["pytest", "pytest-cov"]},
license="MIT license",
zip_safe=False,
keywords=["deep learning",
"computational biology",
"bioinformatics",
"genomics"],
test_suite="tests",
include_package_data=True,
tests_require=["pytest", "pytest-cov"],
entry_points = {
"console_scripts": [
"train = basepairmodels.cli.bpnettrainer:main",
"predict = basepairmodels.cli.predict:predict_main",
"metrics = basepairmodels.cli.metrics:metrics_main",
"interpret = basepairmodels.cli.interpret:interpret_main",
"modisco = basepairmodels.cli.run_modisco:modisco_main",
"logits2profile = basepairmodels.cli.logits2profile:logits2profile_main",
"bounds = basepairmodels.cli.bounds:bounds_main",
"counts_loss_weight = basepairmodels.cli.counts_loss_weight:counts_loss_weight_main",
"embeddings = basepairmodels.cli.embeddings:embeddings_main",
"shap_scores = basepairmodels.cli.shap_scores:shap_scores_main",
"var_shap = basepairmodels.cli.variant_shap_scores:shap_scores_main",
"motif_discovery = basepairmodels.cli.motif_discovery:motif_discovery_main"
"shap = basepairmodels.cli.shap:shap_scores_main"
# "fastpredict = basepairmodels.cli.fastpredict:predict_main"
]
}
)