diff --git a/README.md b/README.md
index dc74828ba98637..ac043f55864984 100644
--- a/README.md
+++ b/README.md
@@ -53,7 +53,7 @@
Conda |
-
+
|
@@ -61,7 +61,7 @@
Conda-forge |
-
+
|
@@ -123,31 +123,31 @@ Here are just a few of the things that pandas does well:
moving window linear regressions, date shifting and lagging, etc.
- [missing-data]: http://pandas.pydata.org/pandas-docs/stable/missing_data.html#working-with-missing-data
- [insertion-deletion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
- [alignment]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html?highlight=alignment#intro-to-data-structures
- [groupby]: http://pandas.pydata.org/pandas-docs/stable/groupby.html#group-by-split-apply-combine
- [conversion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe
- [slicing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#slicing-ranges
- [fancy-indexing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-ix
- [subsetting]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
- [merging]: http://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging
- [joining]: http://pandas.pydata.org/pandas-docs/stable/merging.html#joining-on-index
- [reshape]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-and-pivot-tables
- [pivot-table]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#pivot-tables-and-cross-tabulations
- [mi]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#hierarchical-indexing-multiindex
- [flat-files]: http://pandas.pydata.org/pandas-docs/stable/io.html#csv-text-files
- [excel]: http://pandas.pydata.org/pandas-docs/stable/io.html#excel-files
- [db]: http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
- [hdfstore]: http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables
- [timeseries]: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-series-date-functionality
+ [missing-data]: https://pandas.pydata.org/pandas-docs/stable/missing_data.html#working-with-missing-data
+ [insertion-deletion]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
+ [alignment]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html?highlight=alignment#intro-to-data-structures
+ [groupby]: https://pandas.pydata.org/pandas-docs/stable/groupby.html#group-by-split-apply-combine
+ [conversion]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe
+ [slicing]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#slicing-ranges
+ [fancy-indexing]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-ix
+ [subsetting]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing
+ [merging]: https://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging
+ [joining]: https://pandas.pydata.org/pandas-docs/stable/merging.html#joining-on-index
+ [reshape]: https://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-and-pivot-tables
+ [pivot-table]: https://pandas.pydata.org/pandas-docs/stable/reshaping.html#pivot-tables-and-cross-tabulations
+ [mi]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#hierarchical-indexing-multiindex
+ [flat-files]: https://pandas.pydata.org/pandas-docs/stable/io.html#csv-text-files
+ [excel]: https://pandas.pydata.org/pandas-docs/stable/io.html#excel-files
+ [db]: https://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries
+ [hdfstore]: https://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables
+ [timeseries]: https://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-series-date-functionality
## Where to get it
The source code is currently hosted on GitHub at:
-http://github.com/pandas-dev/pandas
+https://github.com/pandas-dev/pandas
Binary installers for the latest released version are available at the [Python
-package index](http://pypi.python.org/pypi/pandas/) and on conda.
+package index](https://pypi.python.org/pypi/pandas) and on conda.
```sh
# conda
@@ -161,11 +161,11 @@ pip install pandas
## Dependencies
- [NumPy](http://www.numpy.org): 1.7.0 or higher
-- [python-dateutil](http://labix.org/python-dateutil): 1.5 or higher
-- [pytz](http://pytz.sourceforge.net)
+- [python-dateutil](https://labix.org/python-dateutil): 1.5 or higher
+- [pytz](https://pythonhosted.org/pytz)
- Needed for time zone support with ``pandas.date_range``
-See the [full installation instructions](http://pandas.pydata.org/pandas-docs/stable/install.html#dependencies)
+See the [full installation instructions](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies)
for recommended and optional dependencies.
## Installation from sources
@@ -197,13 +197,13 @@ mode](https://pip.pypa.io/en/latest/reference/pip_install.html#editable-installs
pip install -e .
```
-See the full instructions for [installing from source](http://pandas.pydata.org/pandas-docs/stable/install.html#installing-from-source).
+See the full instructions for [installing from source](https://pandas.pydata.org/pandas-docs/stable/install.html#installing-from-source).
## License
-BSD
+[BSD 3](LICENSE)
## Documentation
-The official documentation is hosted on PyData.org: http://pandas.pydata.org/pandas-docs/stable/
+The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable
The Sphinx documentation should provide a good starting point for learning how
to use the library. Expect the docs to continue to expand as time goes on.
@@ -223,7 +223,7 @@ Most development discussion is taking place on github in this repo. Further, the
## Contributing to pandas
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.
-A detailed overview on how to contribute can be found in the **[contributing guide.](http://pandas.pydata.org/pandas-docs/stable/contributing.html)**
+A detailed overview on how to contribute can be found in the **[contributing guide.](https://pandas.pydata.org/pandas-docs/stable/contributing.html)**
If you are simply looking to start working with the pandas codebase, navigate to the [GitHub “issues” tab](https://github.com/pandas-dev/pandas/issues) and start looking through interesting issues. There are a number of issues listed under [Docs](https://github.com/pandas-dev/pandas/issues?labels=Docs&sort=updated&state=open) and [Difficulty Novice](https://github.com/pandas-dev/pandas/issues?q=is%3Aopen+is%3Aissue+label%3A%22Difficulty+Novice%22) where you could start out.
diff --git a/doc/source/gotchas.rst b/doc/source/gotchas.rst
index a3a90f514f1420..a3062b4086673b 100644
--- a/doc/source/gotchas.rst
+++ b/doc/source/gotchas.rst
@@ -144,7 +144,7 @@ To evaluate single-element pandas objects in a boolean context, use the method `
Bitwise boolean
~~~~~~~~~~~~~~~
-Bitwise boolean operators like ``==`` and ``!=`` will return a boolean ``Series``,
+Bitwise boolean operators like ``==`` and ``!=`` return a boolean ``Series``,
which is almost always what you want anyways.
.. code-block:: python
@@ -194,7 +194,7 @@ For lack of ``NA`` (missing) support from the ground up in NumPy and Python in
general, we were given the difficult choice between either
- A *masked array* solution: an array of data and an array of boolean values
- indicating whether a value
+ indicating whether a value is there or is missing
- Using a special sentinel value, bit pattern, or set of sentinel values to
denote ``NA`` across the dtypes
@@ -247,16 +247,16 @@ dtype in order to store the NAs. These are summarized by this table:
``integer``, cast to ``float64``
``boolean``, cast to ``object``
-While this may seem like a heavy trade-off, I have found very few
-cases where this is an issue in practice. Some explanation for the motivation
-here in the next section.
+While this may seem like a heavy trade-off, I have found very few cases where
+this is an issue in practice i.e. storing values greater than 2**53. Some
+explanation for the motivation is in the next section.
Why not make NumPy like R?
~~~~~~~~~~~~~~~~~~~~~~~~~~
Many people have suggested that NumPy should simply emulate the ``NA`` support
present in the more domain-specific statistical programming language `R
-`__. Part of the reason is the NumPy type hierarchy:
+`__. Part of the reason is the NumPy type hierarchy:
.. csv-table::
:header: "Typeclass","Dtypes"
@@ -305,7 +305,7 @@ the ``DataFrame.copy`` method. If you are doing a lot of copying of DataFrame
objects shared among threads, we recommend holding locks inside the threads
where the data copying occurs.
-See `this link `__
+See `this link `__
for more information.
@@ -332,5 +332,5 @@ using something similar to the following:
s = pd.Series(newx)
See `the NumPy documentation on byte order
-`__ for more
+`__ for more
details.