-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathpytorch_transforms.py
147 lines (122 loc) · 4.7 KB
/
pytorch_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""
Shows a small example of how to use transformations (perhaps unecessarily many)
on CIFAR10 dataset and training on a small CNN toy network.
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-04-09 Initial coding
* 2022-12-19 Updated comments, minor code revision, and checked code still works with latest PyTorch.
"""
# Imports
import torch
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
# Simple CNN
class CNN(nn.Module):
def __init__(self, in_channels, num_classes):
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=8,
kernel_size=3,
stride=1,
padding=1,
)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(
in_channels=8,
out_channels=16,
kernel_size=3,
stride=1,
padding=1,
)
self.fc1 = nn.Linear(16 * 8 * 8, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
return self.fc1(x)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
learning_rate = 3e-4 # for future copilot: this is karpathy's constant
batch_size = 64
num_epochs = 5
# Load pretrain model & modify it
model = CNN(in_channels=3, num_classes=10)
model.classifier = nn.Sequential(nn.Linear(512, 100), nn.ReLU(), nn.Linear(100, 10))
model.to(device)
# Load Data
my_transforms = transforms.Compose(
[ # Compose makes it possible to have many transforms
transforms.Resize((36, 36)), # Resizes (32,32) to (36,36)
transforms.RandomCrop((32, 32)), # Takes a random (32,32) crop
transforms.ColorJitter(brightness=0.5), # Change brightness of image
transforms.RandomRotation(
degrees=45
), # Perhaps a random rotation from -45 to 45 degrees
transforms.RandomHorizontalFlip(
p=0.5
), # Flips the image horizontally with probability 0.5
transforms.RandomVerticalFlip(
p=0.05
), # Flips image vertically with probability 0.05
transforms.RandomGrayscale(p=0.2), # Converts to grayscale with probability 0.2
transforms.ToTensor(), # Finally converts PIL image to tensor so we can train w. pytorch
transforms.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]
), # Note: these values aren't optimal
]
)
train_dataset = datasets.CIFAR10(
root="dataset/", train=True, transform=my_transforms, download=True
)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
print(f"Loss average over epoch {epoch} is {sum(losses)/len(losses):.3f}")
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
check_accuracy(train_loader, model)