-
Notifications
You must be signed in to change notification settings - Fork 0
/
Leetcode Problem 51 N-Queens.txt
285 lines (239 loc) · 6.86 KB
/
Leetcode Problem 51 N-Queens.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
Leetcode problem : 51. N-Queens
Description : The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.
Example:
Input: 4
Output: [
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Hint To Solve : Recursion until all rows get filled. Backtracking if the current queen placement fails.
Language: C#
public class Solution
{
private IList<IList<string>> Answer;
public Solution()
{
Answer = new List<IList<string>>();
}
void RecordAnswer(bool[,] binaryGrid, int boardSize)
{
List<string> solution = new List<string>();
for(int i = 0; i<boardSize; ++i)
{
string row = "";
for(int j = 0; j<boardSize; ++j)
{
if(binaryGrid[i,j] == false)
{
row += ".";
}
else
{
row += "Q";
}
}
solution.Add(row);
}
Answer.Add(solution);
}
//Printing the binary grid.
void PrintGrid(bool[,] binaryGrid,int totalQueens)
{
for(int i = 0; i<totalQueens; ++i)
{
for(int j = 0; j<totalQueens; ++j)
{
Console.Write(binaryGrid[i,j] + " ");
}
Console.WriteLine();
}
Console.WriteLine("-------------------------------------------------");
Console.WriteLine();
}
//Traverse horizontal, vertical and diagonal and check if it's safe
bool isSafeToPlace(int currentRow, int currentCol, bool[,] binaryGrid,int boardSize)
{
bool result = true;
//Check vertical upward.
int row = currentRow+1;
int col = currentCol;
while(row < boardSize)
{
if(binaryGrid[row,col] == true)
{
result = false;
return result;
}
else
{
row += 1;
}
}
//Check vertical downward.
row = currentRow - 1;
col = currentCol;
while(row >= 0)
{
if(binaryGrid[row,col] == true)
{
result = false;
return result;
}
else
{
row -= 1;
}
}
//Console.WriteLine("Vertical Safe");
//Check horizontal right.
row = currentRow;
col = currentCol+1;
while(col < boardSize)
{
if(binaryGrid[row,col] == true)
{
result = false;
return result;
}
else
{
col += 1;
}
}
//Check horizontal left.
row = currentRow;
col = currentCol-1;
while(col >= 0)
{
if(binaryGrid[row,col] == true)
{
result = false;
return result;
}
else
{
col -= 1;
}
}
//Console.WriteLine("Horizontal Safe");
//Check diagonal NE.
row = currentRow-1;
col = currentCol+1;
while(row >= 0 && col<boardSize)
{
if(binaryGrid[row,col] == true)
{
result = false;
return result;
}
else
{
row = row-1;
col = col+1;
}
}
//Check diagonal NW.
row = currentRow-1;
col = currentCol-1;
while(row >= 0 && col>=0)
{
if(binaryGrid[row,col] == true)
{
result = false;
return result;
}
else
{
row = row-1;
col = col-1;
}
}
//Check diagonal SE.
row = currentRow+1;
col = currentCol+1;
while(row < boardSize && col < boardSize)
{
if(binaryGrid[row,col] == true)
{
result = false;
return result;
}
else
{
row = row+1;
col = col+1;
}
}
//Check diagonal SW.
row = currentRow+1;
col = currentCol-1;
while(row < boardSize && col>=0)
{
if(binaryGrid[row,col] == true)
{
result = false;
return result;
}
else
{
row = row+1;
col = col-1;
}
}
//Console.WriteLine("Diagonal Safe");
return result;
}
//Recursive call
bool placeQueen(int row, ref bool[,] binaryGrid,int totalQueens)
{
if(row == totalQueens)
{
//Console.WriteLine("################### Final Result ######################");
//PrintGrid(binaryGrid,totalQueens);
RecordAnswer(binaryGrid, totalQueens);
return true;
}
else
{
//PrintGrid(binaryGrid,totalQueens);
for(int col = 0; col<totalQueens; ++col)
{
//Check if this position is safe for this queen.
if(isSafeToPlace(row,col,binaryGrid,totalQueens))
{
//Console.WriteLine("Safe to place queen at :"+ row + "," + col +" at row: "+ row);
//Place the queen. Make this position taken.
binaryGrid[row,col] = true;
//Move to next row and try to place queen.
bool solutionFound = placeQueen(row+1,ref binaryGrid, totalQueens);
//If we can't place queens in future. Move this queen and try another position.
//Unplace this queen.
binaryGrid[row,col] = false;
}
}
}
//We tried all possible scenarios but no solution found.
return false;
}
public IList<IList<string>> SolveNQueens(int n)
{
bool[,] binaryGrid = new bool[n,n];
for(int i = 0; i<n; ++i)
{
for(int j = 0; j<n; ++j)
{
binaryGrid[i,j] = false;
}
}
placeQueen(0,ref binaryGrid,n);
return Answer;
}
}