-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
147 lines (105 loc) · 5.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import sys,tweepy,csv,re
from textblob import TextBlob
import matplotlib.pyplot as plt
class SentimentAnalysis:
def __init__(self):
self.tweets = []
self.tweetText = []
def DownloadData(self):
accessToken = "***************************"
accessTokenSecret = "******************************"
consumerKey = "************************"
consumerSecret = "**************************"
auth = tweepy.OAuthHandler(consumerKey, consumerSecret)
auth.set_access_token(accessToken, accessTokenSecret)
api = tweepy.API(auth)
searchTerm = input("Enter Keyword/Tag to search about: ")
NoOfTerms = int(input("Enter how many tweets to search: "))
# searching for tweets
self.tweets = tweepy.Cursor(api.search, q=searchTerm, lang = "en").items(NoOfTerms)
csvFile = open('result.csv', 'a')
csvWriter = csv.writer(csvFile)
polarity = 0
positive = 0
wpositive = 0
spositive = 0
negative = 0
wnegative = 0
snegative = 0
neutral = 0
for tweet in self.tweets:
self.tweetText.append(self.cleanTweet(tweet.text).encode('utf-8'))
analysis = TextBlob(tweet.text)
# print(analysis.sentiment) # print tweet's polarity
polarity += analysis.sentiment.polarity
if (analysis.sentiment.polarity == 0):
neutral += 1
elif (analysis.sentiment.polarity > 0 and analysis.sentiment.polarity <= 0.3):
wpositive += 1
elif (analysis.sentiment.polarity > 0.3 and analysis.sentiment.polarity <= 0.6):
positive += 1
elif (analysis.sentiment.polarity > 0.6 and analysis.sentiment.polarity <= 1):
spositive += 1
elif (analysis.sentiment.polarity > -0.3 and analysis.sentiment.polarity <= 0):
wnegative += 1
elif (analysis.sentiment.polarity > -0.6 and analysis.sentiment.polarity <= -0.3):
negative += 1
elif (analysis.sentiment.polarity > -1 and analysis.sentiment.polarity <= -0.6):
snegative += 1
csvWriter.writerow(self.tweetText)
csvFile.close()
positive = self.percentage(positive, NoOfTerms)
wpositive = self.percentage(wpositive, NoOfTerms)
spositive = self.percentage(spositive, NoOfTerms)
negative = self.percentage(negative, NoOfTerms)
wnegative = self.percentage(wnegative, NoOfTerms)
snegative = self.percentage(snegative, NoOfTerms)
neutral = self.percentage(neutral, NoOfTerms)
polarity = polarity / NoOfTerms
print("How people are reacting on " + searchTerm + " by analyzing " + str(NoOfTerms) + " tweets.")
print()
print("General Report: ")
if (polarity == 0):
print("Neutral")
elif (polarity > 0 and polarity <= 0.3):
print("Weakly Positive")
elif (polarity > 0.3 and polarity <= 0.6):
print("Positive")
elif (polarity > 0.6 and polarity <= 1):
print("Strongly Positive")
elif (polarity > -0.3 and polarity <= 0):
print("Weakly Negative")
elif (polarity > -0.6 and polarity <= -0.3):
print("Negative")
elif (polarity > -1 and polarity <= -0.6):
print("Strongly Negative")
print()
print("Detailed Report: ")
print(str(positive) + "% people thought it was positive")
print(str(wpositive) + "% people thought it was weakly positive")
print(str(spositive) + "% people thought it was strongly positive")
print(str(negative) + "% people thought it was negative")
print(str(wnegative) + "% people thought it was weakly negative")
print(str(snegative) + "% people thought it was strongly negative")
print(str(neutral) + "% people thought it was neutral")
self.plotPieChart(positive, wpositive, spositive, negative, wnegative, snegative, neutral, searchTerm, NoOfTerms)
def cleanTweet(self, tweet):
return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t]) | (\w +:\ / \ / \S +)", " ", tweet).split())
#
def percentage(self, part, whole):
temp = 100 * float(part) / float(whole)
return format(temp, '.2f')
def plotPieChart(self, positive, wpositive, spositive, negative, wnegative, snegative, neutral, searchTerm, noOfSearchTerms):
labels = ['Positive [' + str(positive) + '%]', 'Weakly Positive [' + str(wpositive) + '%]','Strongly Positive [' + str(spositive) + '%]', 'Neutral [' + str(neutral) + '%]',
'Negative [' + str(negative) + '%]', 'Weakly Negative [' + str(wnegative) + '%]', 'Strongly Negative [' + str(snegative) + '%]']
sizes = [positive, wpositive, spositive, neutral, negative, wnegative, snegative]
colors = ['yellowgreen','lightgreen','darkgreen', 'gold', 'red','lightsalmon','darkred']
patches, texts = plt.pie(sizes, colors=colors, startangle=90)
plt.legend(patches, labels, loc="best")
plt.title('How people are reacting on ' + searchTerm + ' by analyzing ' + str(noOfSearchTerms) + ' Tweets.')
plt.axis('equal')
plt.tight_layout()
plt.show()
if __name__== "__main__":
sa = SentimentAnalysis()
sa.DownloadData()