-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrf_feat_imp.py
129 lines (109 loc) · 6.96 KB
/
rf_feat_imp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
'''
Akond Rahman
Nov 15, 2017
Wednesday
Feature importance for IaC Metrics using RF
'''
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
import os
def readDataset(fileParam, dataTypeFlag=True):
if dataTypeFlag:
data_set_to_return = np.genfromtxt(fileParam, delimiter=',', skip_header=1, dtype='float')
else:
data_set_to_return = np.genfromtxt(fileParam, delimiter=',', skip_header=1, dtype='str')
return data_set_to_return
def getColumnNames(file_name_param, start, end ):
ds_ = pd.read_csv(file_name_param)
temp_ = list(ds_.columns.values)
temp_ = temp_[start:end]
return temp_
def dumpContentIntoFile(strP, fileP):
fileToWrite = open( fileP, 'w')
fileToWrite.write(strP)
fileToWrite.close()
return str(os.stat(fileP).st_size)
def calcFeatureImp(feature_vec, label_vec, feature_names_param, output_file, repeat=10):
header_str, str2write= '', ''
for name_ in feature_names_param:
header_str = header_str + name_ + ','
theRndForestModel = RandomForestClassifier()
theRndForestModel.fit(feature_vec, label_vec)
feat_imp_vector=theRndForestModel.feature_importances_
#print feat_imp_vector
for ind_ in xrange(repeat):
for imp_vec_index in xrange(len(feat_imp_vector)):
feat_imp_val = round(feat_imp_vector[imp_vec_index], 5)
str2write = str2write + str(feat_imp_val) + ','
# print 'Anti-pattern:{}, score:{}'.format(feature_names_param[imp_vec_index], feat_imp_val)
# print '-'*25
str2write = str2write + '\n'
str2write = header_str + '\n' + str2write
output_status= dumpContentIntoFile(str2write, output_file)
print 'Dumped the RF FEATURE IMPORTANCE file of {} bytes'.format(output_status)
def calcRFE(feature_vec, label_vec, feature_names_param):
# http://blog.datadive.net/selecting-good-features-part-iv-stability-selection-rfe-and-everything-side-by-side/
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
lr_estimator = LogisticRegression()
nb_estimator = MultinomialNB()
for estimator in (lr_estimator, nb_estimator):
selector = RFE(estimator, 5, step=1)
selector = selector.fit(feature_vec, label_vec)
elim_deci = selector.support_
all_ranks = selector.ranking_ # 1 means highest rank
for feature, deci in zip(feature_names_param, elim_deci):
print "METRIC:{},DECISION:{}".format(feature, deci)
print '*'*25
for feature, rank in zip(feature_names_param, all_ranks):
print "METRIC:{},RANK:{}".format(feature, rank)
print '='*50
if __name__=='__main__':
# ds_file_name = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/dataset/OCT17_BASTION_FULL_PROCESS_DATASET.csv'
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/output/rf_feat_imp/BASTION.csv'
# ds_file_name='/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/dataset/NO-COMM-AGE/CIS.csv'
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/output/rf_feat_imp/CISCO.csv'
# ds_file_name='/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/dataset/NO-COMM-AGE/MIR.csv'
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/output/rf_feat_imp/MIRANTIS.csv'
# ds_file_name = "/Users/akond/Documents/AkondOneDrive/OneDrive/IaC-Defect-Prediction-Project/reproc/DEFECT-Datasets/MOZILLA_DEFECT_DATASET.csv"
# ds_file_name = "/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/dataset/NO-COMM-AGE/MOZ.csv"
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/output/rf_feat_imp/MOZILLA.csv'
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/IaC-Defect-Prediction-Project/results/emse/FI_MOZILLA.csv'
# ds_file_name = "/Users/akond/Documents/AkondOneDrive/OneDrive/IaC-Defect-Prediction-Project/reproc/DEFECT-Datasets/OPENSTACK_DEFECT_DATASET.csv"
# ds_file_name="/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/dataset/NO-COMM-AGE/OST.csv"
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/output/rf_feat_imp/OPENSTACK.csv'
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/IaC-Defect-Prediction-Project/results/emse/FI_OPENSTACK.csv'
# ds_file_name = "/Users/akond/Documents/AkondOneDrive/OneDrive/IaC-Defect-Prediction-Project/reproc/DEFECT-Datasets/WIKIMEDIA_DEFECT_DATASET.csv"
# ds_file_name="/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/dataset/NO-COMM-AGE/WIK.csv"
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/output/rf_feat_imp/WIKIMEDIA.csv'
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/IaC-Defect-Prediction-Project/results/emse/FI_WIKIMEDIA.csv'
# ds_file_name='/Users/akond/Documents/AkondOneDrive/OneDrive/IaC-Tree/dataset/PHASE7_MIRANTIS_FULL_DATASET.csv'
# ds_file_name='/Users/akond/Documents/AkondOneDrive/OneDrive/IaC-Tree/dataset/PHASE7_MOZ_FULL_DATASET.csv'
# ds_file_name='/Users/akond/Documents/AkondOneDrive/OneDrive/IaC-Tree/dataset/PHASE7_OST_FULL_DATASET.csv'
# ds_file_name='/Users/akond/Documents/AkondOneDrive/OneDrive/IaC-Tree/dataset/PHASE7_WIKI_FULL_DATASET.csv'
'''
ICSE 19 / FSE 19 PUSH
'''
# ds_file_name='/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/dataset/ICSE19_TSE/MIR_FUL_PRO.csv'
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/output/rf_feat_imp/ICSE19_TSE/MIR.csv'
# ds_file_name='/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/dataset/ICSE19_TSE/MOZ_FUL_PRO.csv'
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/output/rf_feat_imp/ICSE19_TSE/MOZ.csv'
# ds_file_name='/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/dataset/ICSE19_TSE/OST_FUL_PRO.csv'
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/output/rf_feat_imp/ICSE19_TSE/OST.csv'
# ds_file_name='/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/dataset/ICSE19_TSE/WIK_FUL_PRO.csv'
# output_file_param = '/Users/akond/Documents/AkondOneDrive/OneDrive/ProcessInIaC/output/rf_feat_imp/ICSE19_TSE/WIK.csv'
full_ds=readDataset(ds_file_name)
full_rows, full_cols = np.shape(full_ds)
feature_cols = full_cols - 1
all_features = full_ds[:, 2:feature_cols]
all_labels = full_ds[:, feature_cols]
defected_file_count = len([x_ for x_ in all_labels if x_==1.0])
non_defected_file_count = len([x_ for x_ in all_labels if x_==0.0])
feature_names = getColumnNames(ds_file_name, 2, feature_cols)
calcFeatureImp(all_features, all_labels, feature_names, output_file_param)
print '='*100
print ds_file_name
# calcRFE(all_features, all_labels, feature_names)
print '='*100