-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshootout.py
754 lines (622 loc) · 28.1 KB
/
shootout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
import numpy as np
import gym, os, math, random, pygame, sys, time
import matplotlib.pyplot as plt
import pygame.freetype
from gym import spaces
from stable_baselines.common.env_checker import check_env
from stable_baselines.common.policies import MlpPolicy
from stable_baselines.ppo1 import PPO1
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines.common.evaluation import evaluate_policy
from stable_baselines import PPO2, DQN
# ffmpeg -r 20 -i frame_%01d.jpeg -c:v libx264 -vf fps=20 -pix_fmt yuv420p out.mp4
class Projectile():
tps = 0.4
life = 35
is_alive = True
def __init__(self, shootoutenv, ownerid, id, position, rotation):
self.shootoutenv = shootoutenv
self.ownerid = ownerid
self.id = id
self.position = position
self.rotation = rotation
def step(self):
#print(f"bullet w/ {self.ownerid}, {self.position}")
self.life -= 1
if self.life <= 0 or math.sqrt(self.position[0]**2 + self.position[1]**2) >= self.shootoutenv.arena_radius:
self.is_alive = False
else:
self.position[0] += math.cos(self.rotation) * self.tps
self.position[1] += math.sin(self.rotation) * self.tps
class Player():
hitbox_radius = 0.5
stock = 3
states = ("neutral", "dash", "dodge", "reload", "fire", "carrying", "spawning")
def __init__(self, shootoutenv, id, health=1, max_ammo=10, tps=0.1, position=[0,0], rotation=0):
self.shootoutenv = shootoutenv
self.id = id
self.health = health
self.start_health = health
self.max_ammo = max_ammo
self.ammo = max_ammo
self.tps = tps
self.position = position
self.start_pos = position[:]
self.rotation = rotation # radians, 0 deg facing right
self.start_rotation = rotation
self.state = ["neutral", 0] # neutral dash dodge reload fire carrying spawning
self.cooldown = 0
self.dodgetimer = 0
def get_rect(self):
return pygame.Rect()
def reset(self):
# return player to start pos
self.position = self.start_pos[:]
self.rotation = self.start_rotation
self.state = ["neutral", 0] if self.stock == 3 else ["carrying", 0]
self.ammo = self.max_ammo
self.cooldown = 0
self.dodgetimer = 0
def step(self, action):
# update state
for i in range(len(action)):
if i != 4:
action[i] = round(action[i])
#print(f"{self.id}, {self.position}, {self.rotation}, {self.cooldown}, {self.state}")
if self.state[0] in ["neutral", "spawning"] and self.cooldown == 0:
# able to change state
if action[7]:
if self.ammo <= 0:
self.state = ["reload", 0]
else:
self.state = ["fire", 0]
# id will go from 10-1 inclusive
to_pop = []
for i in range(len(self.shootoutenv.projectiles)):
projectile = self.shootoutenv.projectiles[i]
if projectile.ownerid == self.id and projectile.id == self.ammo:
to_pop.append(i) # remove duplicate bullet
for i in to_pop:
self.shootoutenv.projectiles.pop(i)
self.shootoutenv.projectiles.append(Projectile(self.shootoutenv, self.id, self.ammo, self.position[:], self.rotation))
self.ammo -= 1
elif action[5]:
# dash
self.state = ["dash", 0]
elif action[6] and self.dodgetimer == 0:
self.state = ["dodge", 0]
self.dodgetimer = 24
# check state
if self.state[0] in ["neutral", "fire", "reload", "dash", "spawning"]:
# A D
# 1 0 -1
# 0 0 0
# 0 1 1
# 1 1 1
var_tps = self.tps
if self.state[0] == "dash":
horizontal = 0
vertical = 1
projection_of_normalized = 1
var_tps *= 3
self.state[1] += 1
if self.state[1] >= 5: # dash frames
self.state = ["neutral", 0]
self.cooldown = 3
elif self.state[0] != "dash":
if self.cooldown == 0:
horizontal = 1 if action[3] else (-1 if action[1] else 0)
vertical = 1 if action[0] else (-1 if action[2] else 0)
projection_of_normalized = 1 if abs(horizontal) + abs(vertical)==1 else math.sqrt(2)
self.rotation = action[4]*2*math.pi
else:
horizontal = 0
vertical = 0
projection_of_normalized = 1
self.rotation = action[4]*2*math.pi
if self.state[0] == "reload":
var_tps *= 0.6 # speed debuff
self.state[1] += 1
if self.state[1] >= 12: # dash frames
self.state = ["neutral", 0]
self.ammo = self.max_ammo
self.position[0] += (math.cos(self.rotation) * vertical + math.sin(self.rotation) * horizontal) * projection_of_normalized * var_tps
self.position[1] += (math.sin(self.rotation) * vertical - math.cos(self.rotation) * horizontal) * projection_of_normalized * var_tps
# progress state
if self.state[0] == "dodge":
self.state[1] += 1
if self.state[1] >= 8: # dodge frames
self.state = ["neutral", 0]
self.cooldown = 3
elif self.state[0] == "fire":
self.state[1] += 1
if self.state[1] >= 8: # fire frames
self.state = ["neutral", 0]
elif self.state[0] == "carrying":
self.state[1] += 1
if self.state[1] >= 15:
self.state = ["spawning", 0]
elif self.state[0] == "spawning":
self.state[1] += 1
if self.state[1] >= 15:
self.state = ["neutral", 0]
self.cooldown = max(0, self.cooldown - 1) # lower cooldown
self.dodgetimer = max(0, self.dodgetimer - 1)
# check if dead
return math.sqrt(self.position[0]**2 + self.position[1]**2) >= self.shootoutenv.arena_radius
class BaselinePolicy:
def predict(self,obs):
#print("Sampling random action.")
#out = np.array([1,0,0,0,0,1,0,0])
out = spaces.Box(low=np.array([0,0,0,0,0,0,0,0]), high=np.array([1,1,1,1,1,1,1,1]), shape=(8,), dtype=np.float32).sample()
for i in range(len(out)):
if i != 4:
out[i] = round(out[i])
#print(obs)
return out
class PlayerPolicy:
def __init__(self, pixels_per_tile):
self.pixels_per_tile = pixels_per_tile
def game_to_pixel_coords(self, coords):
return (200 + coords[0] * self.pixels_per_tile, 200 - coords[1] * self.pixels_per_tile)
def predict(self, obs):
# W A S D rotation dash dodge fire
out = np.array([0,0,0,0,0,0,0,0], dtype=np.float32)
keys=pygame.key.get_pressed()
if keys[pygame.K_w]:
out[0] = 1
if keys[pygame.K_a]:
out[1] = 1
if keys[pygame.K_s]:
out[2] = 1
if keys[pygame.K_d]:
out[3] = 1
if keys[pygame.K_SPACE] or keys[pygame.K_LSHIFT]:
out[5] = 1
mpos = pygame.mouse.get_pos()
ppos = (obs[1], obs[2])
ppos = self.game_to_pixel_coords(ppos)
#print(ppos)
#print(f"y:{mpos[1] - ppos[1]} / x:{mpos[0] - ppos[0]}")
out[4] = np.float32((math.atan2(ppos[1] - mpos[1], mpos[0] - ppos[0])/(2*math.pi))%1)
if pygame.mouse.get_pressed()[2]:
out[6] = 1
if pygame.mouse.get_pressed()[0]:
out[7] = 1
#print(out)
#print(obs)
return out
class ShootoutEnv(gym.Env):
metadata = {'render.modes': ['console']}
def __init__(self, time_limit=1000):
super(ShootoutEnv, self).__init__()
self.arena_radius = 5
self.time_limit = time_limit
self.projectiles = []
self.timer = 0
pygame.init()
self.GAME_FONT = pygame.freetype.Font("media/Consolas.ttf", 16)
self.screen_width = 400
self.size = (self.screen_width, self.screen_width)
self.screen_width_tiles = 2 * self.arena_radius / 0.75
self.pixels_per_tile = int((self.screen_width*0.375)/(self.arena_radius))
self.screen = pygame.display.set_mode(self.size)
self.player_sprite = pygame.image.load("media/baseball.png")
self.player_sprite = pygame.transform.scale(self.player_sprite, (self.pixels_per_tile, self.pixels_per_tile))
self.max_ammo = 10
# W A S D rotation dash dodge fire
self.action_space = spaces.Box(low=np.array([0,0,0,0,0,0,0,0]), high=np.array([1,1,1,1,1,1,1,1]), shape=(8,), dtype=np.float32)
# self(health absposx abspoxy centerdist absrot ammo stateval stock
# state
# rotationtoenemy
# near bullets) [each bullet: exists relativeposx relativeposy rotation facing_rot]
# other(health absposx absposy centerdist relativeposx relativeposy orienposx orienposy
# absrot relativerot stateval stock
# state
# near bullets) [each bullet: exists relativeposx relativeposy rotation facing_rot]
# timer
lowarray = np.array(
[0, -self.screen_width_tiles/2, -self.screen_width_tiles/2, 0, 0, 0, 0, 0] +
[0 for _ in range(len(Player.states))] +
[0] +
[(0, -self.screen_width_tiles, -self.screen_width_tiles, 0, 0)[i%5] for i in range(self.max_ammo*5)] +
[0, -self.screen_width_tiles/2, -self.screen_width_tiles/2, 0, -self.screen_width_tiles, -self.screen_width_tiles, -self.screen_width_tiles, -self.screen_width_tiles,
0, 0, 0, 0] +
[0 for _ in range(len(Player.states))] +
[(0, -self.screen_width_tiles, -self.screen_width_tiles, 0, 0)[i%5] for i in range(self.max_ammo*5)] +
[0]
)
higharray = np.array(
[1, self.screen_width_tiles/2, self.screen_width_tiles/2, self.screen_width_tiles/2, 2 * math.pi, 10, 20, 3] +
[1 for _ in range(len(Player.states))] +
[2*math.pi] +
[(1, self.screen_width_tiles, self.screen_width_tiles, 2*math.pi, 2*math.pi)[i%5] for i in range(self.max_ammo*5)] +
[1, self.screen_width_tiles/2, self.screen_width_tiles/2, self.screen_width_tiles/2, self.screen_width_tiles, self.screen_width_tiles, self.screen_width_tiles, self.screen_width_tiles,
2 * math.pi, 2 * math.pi, 20, 3] +
[1 for _ in range(len(Player.states))] +
[(1, self.screen_width_tiles, self.screen_width_tiles, 2*math.pi, 2*math.pi)[i%5] for i in range(self.max_ammo*5)] +
[self.time_limit]
)
print(f"shape of lowarray {lowarray.shape}")
self.observation_space = spaces.Box(
low=lowarray,
high=higharray,
shape=lowarray.shape,
dtype=np.float32)
self.otherAction = None
#self.policy = BaselinePolicy()
self.policy = PlayerPolicy(self.pixels_per_tile)
pass
def generate_observation(self, id):
# self(health absposx abspoxy centerdist absrot ammo stateval stock
# state
# rotationtoenemy
# near bullets) [each bullet: exists relativeposx relativeposy rotation facing_rot]
# other(health absposx absposy centerdist relativeposx relativeposy orienposx orienposy
# absrot relativerot stateval stock
# state
# near bullets) [each bullet: exists relativeposx relativeposy rotation facing_rot]
# timer
player = self.player_1 if self.player_1.id == id else self.player_2
other_player = self.player_2 if self.player_1.id == id else self.player_1
my_projectiles = [0 for _ in range(self.max_ammo)]
other_projectiles = [0 for _ in range(self.max_ammo)]
for projectile in self.projectiles:
(my_projectiles if projectile.ownerid == id else other_projectiles)[projectile.id-1] = projectile
obs = [player.health, player.position[0], player.position[1], math.sqrt(player.position[0]**2 + player.position[1]**2), player.rotation, player.ammo, player.state[1], player.stock]
obs += [1 if player.state[0] == state else 0 for state in player.states]
obs += [math.atan2(player.position[1] - other_player.position[1], other_player.position[0] - player.position[0])%(2*math.pi)]
# bullet stuff mine
for i in range(self.max_ammo):
p = my_projectiles[i]
result = [0,0,0,0,0]
if p != 0:
result = [1, p.position[0] - player.position[0], p.position[1] - player.position[1], p.rotation, (math.atan2(player.position[1] - p.position[1], p.position[0] - player.position[0])+p.rotation)%(2*math.pi)]
obs += result
offset = (other_player.position[0] - player.position[0], other_player.position[1] - player.position[1])
e1 = (math.sin(player.rotation), -math.cos(player.rotation))
e2 = (math.cos(player.rotation), math.sin(player.rotation))
orienposx = offset[0]*e1[0] + offset[1]*e1[1]
orienposy = offset[0]*e2[0] + offset[1]*e2[1]
obs += [other_player.health, other_player.position[0], other_player.position[1], math.sqrt(other_player.position[0]**2 + other_player.position[1]**2), offset[0], offset[1], orienposx, orienposy]
obs += [other_player.rotation, (other_player.rotation - player.rotation)%(2*math.pi), other_player.state[1], player.stock]
obs += [1 if other_player.state[0] == state else 0 for state in other_player.states]
# bullet stuff other
for i in range(self.max_ammo):
p = other_projectiles[i]
result = [0,0,0,0,0]
if p != 0:
result = [1, p.position[0] - player.position[0], p.position[1] - player.position[1], p.rotation, (math.atan2(player.position[1] - p.position[1], p.position[0] - player.position[0])+p.rotation)%(2*math.pi)]
obs += result
obs += [self.timer]
obs = np.array(obs)
#print(f"shape of obs {obs.shape}")
#print(obs)
return obs
override_flipper = 0
def reset(self):
self.timer = 0
sideflipper = random.randint(0,1)*2 - 1
sideflipper = self.override_flipper if self.override_flipper != 0 else sideflipper
self.player_1 = Player(self, 1, 1, self.max_ammo, 0.1, [0, -sideflipper * self.arena_radius/2], sideflipper * math.pi * 0.5)
self.player_2 = Player(self, 2, 1, self.max_ammo, 0.1, [0,sideflipper * self.arena_radius/2], -sideflipper * math.pi*0.5)
self.player_1.stock = 3
self.player_1.reset()
self.player_2.stock = 3
self.player_2.reset()
self.projectiles = []
return self.generate_observation(1)
def game_to_pixel_coords(self, coords):
return (200 + coords[0] * self.pixels_per_tile, 200 - coords[1] * self.pixels_per_tile)
def center_coords(self, coords, width, height):
return (coords[0]-width/2, coords[1] - height/2)
def ko_player(self, player):
player.stock -= 1
if player.stock <= 0:
return True
else:
# return player to start pos
player.reset()
self.projectiles = []
return False
def step(self, action):
info = {}
reward = 0
done = False
# step both players
kod_players = [] # for skipping bullets later
obs2 = self.generate_observation(2)
prediction = self.policy.predict(obs2)
if len(prediction) == 2 and len(prediction[0]) > 2:
prediction = prediction[0]
player_2_kod = self.player_2.step(prediction)
player_1_kod = self.player_1.step(action)
if player_1_kod and not player_2_kod:
kod_players.append(self.player_1)
if self.ko_player(self.player_1):
return self.generate_observation(1), -3 + self.timer/self.time_limit, True, info
else:
reward -= 1
elif player_2_kod and not player_1_kod:
kod_players.append(self.player_2)
if self.ko_player(self.player_2):
return self.generate_observation(1), 3 - self.timer/self.time_limit, True, info
else:
reward += 1
elif player_1_kod and player_2_kod:
kod_players.append(self.player_1)
kod_players.append(self.player_2)
p1_lost = self.ko_player(self.player_1)
p2_lost = self.ko_player(self.player_2)
if p1_lost and p2_lost:
return self.generate_observation(1), 0, True, info
else:
if p1_lost:
return self.generate_observation(1), -3 + self.timer/self.time_limit, True, info
else:
reward -= 1
if p2_lost:
return self.generate_observation(1), 3 - self.timer/self.time_limit, True, info
else:
reward += 1
# check if ko'd by projectile
to_pop = []
for projectile in self.projectiles:
# step projectiles
projectile.step()
if not projectile.is_alive:
to_pop.append(projectile)
continue
# if still alive, check hits
killable_player = self.player_1 if projectile.ownerid == 2 else self.player_2
if killable_player not in kod_players and killable_player.state[0] not in ["dodge", "carrying", "spawning"]:
if math.sqrt((killable_player.position[0]-projectile.position[0])**2 + \
(killable_player.position[1] - projectile.position[1])**2) <= killable_player.hitbox_radius:
if self.ko_player(killable_player):
return self.generate_observation(1), (3 - self.timer/self.time_limit) if projectile.ownerid == 1 else (-3 + self.timer/self.time_limit), True, info
else:
reward += 1 if projectile.ownerid == 1 else -1
# remove projectile
to_pop.append(projectile)
# remove projectiles to remove
for projectile in to_pop:
if projectile in self.projectiles:
self.projectiles.remove(projectile)
# update obs if not killed
self.timer += 1
if self.timer >= self.time_limit:
return self.generate_observation(1), reward, True, info
else:
return self.generate_observation(1), reward, done, info
def color_from_state(self, state, cooldown):
if state[0] == "neutral":
if cooldown == 0:
return (255,255,255)
else:
return (0, 255, 13) if self.timer % 2 else (50, 168, 56)
elif state[0] == "reload":
return (252, 148, 3) if state[1] % 2 else (222, 118, 0)
elif state[0] == "fire":
return (255, 42, 0) if state[1] % 2 else (222, 37, 0)
elif state[0] == "dodge":
return (191, 0, 255) if state[1] % 2 else (132, 0, 176)
elif state[0] == "dash":
return (0, 255, 251) if state[1] % 2 else (0, 204, 255)
elif state[0] == "carrying":
return (173, 16, 105)
elif state[0] == "spawning":
return (251, 255, 0)
else:
return (255,255,255)
def render(self, mode='light'):
if mode not in ['light', 'heavy']:
raise NotImplementedError()
for event in pygame.event.get():
if event.type == pygame.QUIT: sys.exit()
self.screen.fill((0,0,0))
pygame.draw.circle(self.screen, (255, 255, 255), (self.screen_width/2,self.screen_width/2), self.arena_radius * self.pixels_per_tile, width=1)
self.GAME_FONT.render_to(self.screen, (0, 0), f"P1: ({self.player_1.stock}, {self.player_1.ammo}), P2: ({self.player_2.stock}, {self.player_2.ammo})", (255, 255, 255))
self.GAME_FONT.render_to(self.screen, (0, self.screen_width-16), f"{self.timer}/{self.time_limit}", (255, 255, 255))
player_rect = self.player_sprite.get_rect()
self.screen.blit(self.player_sprite, player_rect.move(self.center_coords(self.game_to_pixel_coords(self.player_1.position),self.pixels_per_tile,self.pixels_per_tile)))
pygame.draw.circle(self.screen, self.color_from_state(self.player_1.state, self.player_1.cooldown), self.game_to_pixel_coords(self.player_1.position), self.pixels_per_tile * 0.8, width=2)
pygame.draw.circle(self.screen, (0,0,255), self.game_to_pixel_coords(self.player_1.position), 5)
self.screen.blit(self.player_sprite, player_rect.move(self.center_coords(self.game_to_pixel_coords(self.player_2.position),self.pixels_per_tile,self.pixels_per_tile)))
pygame.draw.circle(self.screen, self.color_from_state(self.player_2.state, self.player_2.cooldown), self.game_to_pixel_coords(self.player_2.position), self.pixels_per_tile * 0.8, width=2)
pygame.draw.circle(self.screen, (255,0,0), self.game_to_pixel_coords(self.player_2.position), 5)
for projectile in self.projectiles:
pygame.draw.circle(self.screen, (255,0,0), self.game_to_pixel_coords(projectile.position), 1)
if mode == 'heavy':
if self.timer == 0:
# first frame...
self.GAME_FONT.render_to(self.screen, self.game_to_pixel_coords(self.player_1.position), f"Player 1", (0, 0, 255))
self.GAME_FONT.render_to(self.screen, self.game_to_pixel_coords(self.player_2.position), f"Player 2", (255, 0, 0))
if self.player_1.stock <= 0:
self.GAME_FONT.render_to(self.screen, (self.screen_width/2, self.screen_width/2), f"Player 2 wins!", (255, 0, 0))
elif self.player_2.stock <= 0:
self.GAME_FONT.render_to(self.screen, (self.screen_width/2, self.screen_width/2), f"Player 1 wins!", (0, 0, 255))
pygame.display.flip()
if mode == 'heavy':
if self.timer == 0:
time.sleep(2)
if self.player_1.stock <= 0:
time.sleep(2)
elif self.player_2.stock <= 0:
time.sleep(2)
pygame.image.save(self.screen, f"render/frame_{self.timer:03}.jpeg")
def close(self):
pass
LOGDIR = "models/ppo1_selfplay"
def test_player_equivalency():
trial_count = 200
policy1, policy2 = None, None
env = ShootoutEnv()
# load model if it's there
modellist = [f for f in os.listdir(LOGDIR) if f.startswith("history")]
modellist.sort()
filename = None
if len(modellist) > 0:
filename = os.path.join(LOGDIR, modellist[-1]) # the latest best model
if filename != None:
print("loading model: ", filename)
best_model_filename = filename
policy1 = PPO1.load(filename, env=env)
#policy2 = PPO1.load(filename, env=env)
policy2 = BaselinePolicy()
env.policy = policy1
policy = policy2
done = False
total_reward = 0
obs = env.reset()
counter = trial_count
#env.override_flipper = 1
round_reward = 0
while counter > 0:
#action, _states = policy.predict(obs)
action = policy.predict(obs)
obs, reward, done, _ = env.step(action)
env.render()
time.sleep(0.05)
total_reward += reward
round_reward += reward
if done:
counter -= 1
#ax.plot(trial_count-counter,round_reward)
#print(round_reward)
round_reward = 0
obs = env.reset()
#env.override_flipper = 1
print(f"{total_reward}, {total_reward/trial_count}")
done = False
total_reward = 0
counter = trial_count
env.policy, policy = policy, env.policy
env.reset()
#env.override_flipper = -1
while counter > 0:
#action = policy.predict(obs)
action, _states = policy.predict(obs)
obs, reward, done, _ = env.step(action)
#env.render()
#time.sleep(0.05)
total_reward += reward
if done:
counter -= 1
obs = env.reset()
#env.override_flipper = -1
print(f"{total_reward}, {total_reward/trial_count}")
def player_vs_best_model():
env = ShootoutEnv()
obs = env.reset()
env.render()
# load model if it's there
modellist = [f for f in os.listdir(LOGDIR) if f.startswith("history")]
modellist.sort()
if len(modellist) > 0:
filename = os.path.join(LOGDIR, modellist[-1]) # the latest best model
if filename != None:
print("loading model: ", filename)
best_model_filename = filename
policy = PPO1.load(filename, env=env)
#policy = BaselinePolicy()
#pixels_per_tile = int((400*0.375)/(5))
#policy = PlayerPolicy(pixels_per_tile)
done = False
total_reward = 0
counter = 100
while counter > 0:
action, _states = policy.predict(obs)
obs, reward, done, _ = env.step(action)
total_reward += reward
env.render()
time.sleep(0.05)
if done:
counter -= 1
obs = env.reset()
print(total_reward)
def unused():
env = ShootoutEnv()
env.reset()
env.render()
for i in range(1000):
obs, rewards, dones, info = env.step(BaselinePolicy().predict(None))
env.render()
time.sleep(0.05)
if dones == True:
print("Env complete! - - - - - - - - - - - -", "reward=", rewards)
obs = env.reset()
if __name__ == "__main__":
#player_vs_best_model()
test_player_equivalency()
if __name__ == "__2main__":
save_dir = "C:/Users/whmra/OneDrive/Documents/Python Projcs/STABLEBASELINES/1v1/models/"
if True:
env = ShootoutEnv()
# Model stuff
#kwargs = {'double_q': True, 'prioritized_replay': True, 'policy_kwargs': dict(dueling=True)}
#model = DQN("MlpPolicy", env, verbose=1, **kwargs)
model = PPO2(MlpPolicy, env, verbose=1)
model.learn(total_timesteps=1000000) # 4000000
else:
#model = DQN.load(save_dir + "/DQN_5_5", verbose=1)
print("Loading model from", save_dir)
model = PPO2.load(save_dir + "PPO2_4_4(0)", verbose=1)
if False:
print("Training loaded model...")
model.set_env(DummyVecEnv([lambda: ShootoutEnv()]))
model.learn(total_timesteps=4000000)
if True:
# Create save dir
print("saving model at", save_dir)
os.makedirs(save_dir, exist_ok=True)
model.save(save_dir + "PPO2_4_4(0)")
# Show Model
env = ShootoutEnv()
obs = env.reset()
wins = 0
halts = 0
losses = 0
steps = 20000 # 20000
display_steps = 100
same_action_counter = 0
last_action = 0
# Demonstrate model
print('Running model...')
for i in range(steps):
if i > steps-display_steps:
# Display Maze
print('')
env.render()
# Choose action
#print(obs.shape)
#print(obs)
action, _states = model.predict(obs)
# Take action
obs, rewards, dones, info = env.step(action)
# Return Data
if i > steps-display_steps:
print("reward=", rewards, "action to take=", action)
# Check if done, then reset
if dones == True:
if i > steps-display_steps:
env.render()
print("Env complete! - - - - - - - - - - - -", "reward=", rewards)
if rewards ==1:
wins += 1
elif rewards == -1:
losses += 1
else:
halts += 1
obs = env.reset()
print(env.observation_space)
print(env.action_space)
print(env.action_space.sample())
print("wins=", wins)
print("losses=", losses)
print("halts=", halts)
if wins != 0:
print("average steps per win=", steps/wins)
print("success %=", str((wins/(wins+halts+losses))*100) + "%")
#mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=100)
#print(f"mean_reward:{mean_reward:.2f} +/- {std_reward:.2f}")
env.close()