-
Notifications
You must be signed in to change notification settings - Fork 159
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
cpu-only caffe version of extract_nlvr2_image.py #89
Comments
While I am using Docker Called with args:
Namespace(caffemodel='./resnet101_faster_rcnn_final_iter_320000.caffemodel', cfg_file='/opt/butd/experiments/cfgs/faster_rcnn_end2end_resnet.yml', imgroot='/workspace/images/', outfile='test_obj36.tsv', prototxt='/opt/butd/models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt', set_cfgs=None, split='test')
/opt/butd//tools/../lib/fast_rcnn/config.py:288: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
yaml_cfg = edict(yaml.load(f))
Using config:
{'DATA_DIR': '/opt/butd/data',
'DEDUP_BOXES': 0.0625,
'EPS': 1e-14,
'EXP_DIR': 'faster_rcnn_resnet',
'GPU_ID': 0,
'MATLAB': 'matlab',
'MODELS_DIR': '/opt/butd/models/pascal_voc',
'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
'RNG_SEED': 3,
'ROOT_DIR': '/opt/butd',
'TEST': {'AGNOSTIC': False,
'BBOX_REG': True,
'HAS_ATTRIBUTES': True,
'HAS_RELATIONS': False,
'HAS_RPN': True,
'MAX_SIZE': 1000,
'NMS': 0.3,
'PROPOSAL_METHOD': 'selective_search',
'RPN_MIN_SIZE': 16,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'SCALES': [600],
'SOFT_NMS': 0,
'SVM': False},
'TRAIN': {'AGNOSTIC': False,
'ASPECT_GROUPING': True,
'BATCH_SIZE': 64,
'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_NORMALIZE_TARGETS': True,
'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
'BBOX_REG': True,
'BBOX_THRESH': 0.5,
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'FG_FRACTION': 0.5,
'FG_THRESH': 0.5,
'HAS_ATTRIBUTES': True,
'HAS_RELATIONS': False,
'HAS_RPN': True,
'IMS_PER_BATCH': 1,
'MAX_SIZE': 1000,
'MIN_RELATION_FRACTION': 0.25,
'PROPOSAL_METHOD': 'gt',
'RPN_BATCHSIZE': 64,
'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 16,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'RPN_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'RPN_NORMALIZE_TARGETS': False,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 2000,
'RPN_PRE_NMS_TOP_N': 12000,
'SCALES': [600],
'SNAPSHOT_INFIX': '',
'SNAPSHOT_ITERS': 10000,
'USE_FLIPPED': True,
'USE_PREFETCH': False},
'USE_GPU_NMS': False}
missing 9/9
WARNING: Logging before InitGoogleLogging() is written to STDERR
E0106 20:31:51.758689 920 common.cpp:114] Cannot create Cublas handle. Cublas won't be available.
E0106 20:31:51.758805 920 common.cpp:121] Cannot create Curand generator. Curand won't be available.
F0106 20:31:51.762009 920 cudnn_conv_layer.cpp:52] Check failed: error == cudaSuccess (35 vs. 0) CUDA driver version is insufficient for CUDA runtime version
*** Check failure stack trace: ***
Aborted (core dumped) |
I installed Called with args:
Namespace(caffemodel='./resnet101_faster_rcnn_final_iter_320000.caffemodel', cfg_file='/opt/butd/experiments/cfgs/faster_rcnn_end2end_resnet.yml', imgroot='/workspace/images/', outfile='test_obj36.tsv', prototxt='/opt/butd/models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt', set_cfgs=None, split='test')
/opt/butd//tools/../lib/fast_rcnn/config.py:288: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
yaml_cfg = edict(yaml.load(f))
Using config:
{'DATA_DIR': '/opt/butd/data',
'DEDUP_BOXES': 0.0625,
'EPS': 1e-14,
'EXP_DIR': 'faster_rcnn_resnet',
'GPU_ID': 0,
'MATLAB': 'matlab',
'MODELS_DIR': '/opt/butd/models/pascal_voc',
'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
'RNG_SEED': 3,
'ROOT_DIR': '/opt/butd',
'TEST': {'AGNOSTIC': False,
'BBOX_REG': True,
'HAS_ATTRIBUTES': True,
'HAS_RELATIONS': False,
'HAS_RPN': True,
'MAX_SIZE': 1000,
'NMS': 0.3,
'PROPOSAL_METHOD': 'selective_search',
'RPN_MIN_SIZE': 16,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'SCALES': [600],
'SOFT_NMS': 0,
'SVM': False},
'TRAIN': {'AGNOSTIC': False,
'ASPECT_GROUPING': True,
'BATCH_SIZE': 64,
'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_NORMALIZE_TARGETS': True,
'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
'BBOX_REG': True,
'BBOX_THRESH': 0.5,
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'FG_FRACTION': 0.5,
'FG_THRESH': 0.5,
'HAS_ATTRIBUTES': True,
'HAS_RELATIONS': False,
'HAS_RPN': True,
'IMS_PER_BATCH': 1,
'MAX_SIZE': 1000,
'MIN_RELATION_FRACTION': 0.25,
'PROPOSAL_METHOD': 'gt',
'RPN_BATCHSIZE': 64,
'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 16,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'RPN_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'RPN_NORMALIZE_TARGETS': False,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 2000,
'RPN_PRE_NMS_TOP_N': 12000,
'SCALES': [600],
'SNAPSHOT_INFIX': '',
'SNAPSHOT_ITERS': 10000,
'USE_FLIPPED': True,
'USE_PREFETCH': False},
'USE_GPU_NMS': False}
missing 9/9
START caffe.set_mode_cpu()
WARNING: Logging before InitGoogleLogging() is written to STDERR
F0107 06:00:52.336226 25839 layer_factory.hpp:81] Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer type: Python (known types: AbsVal, Accuracy, ArgMax, BNLL, BatchNorm, BatchReindex, Bias, BoxAnnotatorOHEM, Concat, ContrastiveLoss, Convolution, Crop, Data, Deconvolution, Dropout, DummyData, ELU, Eltwise, Embed, EuclideanLoss, Exp, Filter, Flatten, HDF5Data, HDF5Output, HingeLoss, Im2col, ImageData, InfogainLoss, InnerProduct, InnerProductBlob, Input, LRN, LSTM, LSTMUnit, Log, MVN, MemoryData, MultinomialLogisticLoss, PReLU, PSROIPooling, Parameter, Pooling, Power, RNN, ROIPooling, ReLU, Reduction, Reshape, SPP, Scale, Sigmoid, SigmoidCrossEntropyLoss, Silence, Slice, SmoothL1Loss, SmoothL1LossOHEM, Softmax, SoftmaxWithLoss, SoftmaxWithLossOHEM, Split, TanH, Threshold, Tile, WindowData)
*** Check failure stack trace: *** |
CPU-only seems very slow. Merely 9 images might take about 5 minutes on my virtual machine. |
Will a cpu-only caffe version of
extract_nlvr2_image.py
available?I think install an environment with cpu-only caffe is not difficult anyway.
The text was updated successfully, but these errors were encountered: