-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathsgd.R
682 lines (650 loc) · 24.5 KB
/
sgd.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
#' Stochastic gradient descent
#'
#' Run stochastic gradient descent in order to optimize the induced loss
#' function given a model and data.
#'
#' @param formula an object of class \code{"\link{formula}"} (or one that can be
#' coerced to that class): a symbolic description of the model to be fitted.
#' The details can be found in \code{"\link{glm}"}.
#' @param data an optional data frame, list or environment (or object coercible
#' by \code{\link[base]{as.data.frame}} to a data frame) containing the
#' variables in the model. If not found in data, the variables are taken from
#' environment(formula), typically the environment from which glm is called.
#' @param model character specifying the model to be used: \code{"lm"} (linear
#' model), \code{"glm"} (generalized linear model), \code{"cox"} (Cox
#' proportional hazards model), \code{"gmm"} (generalized method of moments),
#' \code{"m"} (M-estimation). See \sQuote{Details}.
#' @param model.control a list of parameters for controlling the model.
#' \describe{
#' \item{\code{family} (\code{"glm"})}{a description of the error distribution and
#' link function to be used in the model. This can be a character string
#' naming a family function, a family function or the result of a call to
#' a family function. (See \code{\link[stats]{family}} for details of
#' family functions.)}
#' \item{\code{rank} (\code{"glm"})}{logical. Should the rank of the design matrix
#' be checked?}
#' \item{\code{fn} (\code{"gmm"})}{a function \eqn{g(\theta,x)} which returns a
#' \eqn{k}-vector corresponding to the \eqn{k} moment conditions. It is a
#' required argument if \code{gr} not specified.}
#' \item{\code{gr} (\code{"gmm"})}{a function to return the gradient. If
#' unspecified, a finite-difference approximation will be used.}
#' \item{\code{nparams} (\code{"gmm"})}{number of model parameters. This is
#' automatically determined for other models.}
#' \item{\code{type} (\code{"gmm"})}{character specifying the generalized method of
#' moments procedure: \code{"twostep"} (Hansen, 1982), \code{"iterative"}
#' (Hansen et al., 1996). Defaults to \code{"iterative"}.}
#' \item{\code{wmatrix} (\code{"gmm"})}{weighting matrix to be used in the loss
#' function. Defaults to the identity matrix.}
#' \item{\code{loss} (\code{"m"})}{character specifying the loss function to be
#' used in the estimating equation. Default is the Huber loss.}
#' \item{\code{lambda1}}{L1 regularization parameter. Default is 0.}
#' \item{\code{lambda2}}{L2 regularization parameter. Default is 0.}
#' }
#' @param sgd.control an optional list of parameters for controlling the estimation.
#' \describe{
#' \item{\code{method}}{character specifying the method to be used: \code{"sgd"},
#' \code{"implicit"}, \code{"asgd"}, \code{"ai-sgd"}, \code{"momentum"},
#' \code{"nesterov"}. Default is \code{"ai-sgd"}. See \sQuote{Details}.}
#' \item{\code{lr}}{character specifying the learning rate to be used:
#' \code{"one-dim"}, \code{"one-dim-eigen"}, \code{"d-dim"},
#' \code{"adagrad"}, \code{"rmsprop"}. Default is \code{"one-dim"}.
#' See \sQuote{Details}.}
#' \item{\code{lr.control}}{vector of scalar hyperparameters one can
#' set dependent on the learning rate. For hyperparameters aimed
#' to be left as default, specify \code{NA} in the corresponding
#' entries. See \sQuote{Details}.}
#' \item{\code{start}}{starting values for the parameter estimates. Default is
#' random initialization around zero.}
#' \item{\code{size}}{number of SGD estimates to store for diagnostic purposes
#' (distributed log-uniformly over total number of iterations)}
#' \item{\code{reltol}}{relative convergence tolerance. The algorithm stops
#' if it is unable to change the relative mean squared difference in the
#' parameters by more than the amount. Default is \code{1e-05}.}
#' \item{\code{npasses}}{the maximum number of passes over the data. Default
#' is 3.}
#' \item{\code{pass}}{logical. Should \code{tol} be ignored and run the
#' algorithm for all of \code{npasses}?}
#' \item{\code{shuffle}}{logical. Should the algorithm shuffle the data set
#' including for each pass?}
#' \item{\code{verbose}}{logical. Should the algorithm print progress?}
#' }
#' @param \dots arguments to be used to form the default \code{sgd.control}
#' arguments if it is not supplied directly.
#' @param x,y a design matrix and the respective vector of outcomes.
#'
#' @details
#' Models:
#' The Cox model assumes that the survival data is ordered when passed
#' in, i.e., such that the risk set of an observation i is all data points after
#' it.
#'
#' Methods:
#' \describe{
#' \item{\code{sgd}}{stochastic gradient descent (Robbins and Monro, 1951)}
#' \item{\code{implicit}}{implicit stochastic gradient descent (Toulis et al.,
#' 2014)}
#' \item{\code{asgd}}{stochastic gradient with averaging (Polyak and Juditsky,
#' 1992)}
#' \item{\code{ai-sgd}}{implicit stochastic gradient with averaging (Toulis et
#' al., 2015)}
#' \item{\code{momentum}}{"classical" momentum (Polyak, 1964)}
#' \item{\code{nesterov}}{Nesterov's accelerated gradient (Nesterov, 1983)}
#' }
#'
#' Learning rates and hyperparameters:
#' \describe{
#' \item{\code{one-dim}}{scalar value prescribed in Xu (2011) as
#' \deqn{a_n = scale * gamma/(1 + alpha*gamma*n)^(-c)}
#' where the defaults are
#' \code{lr.control = (scale=1, gamma=1, alpha=1, c)}
#' where \code{c} is \code{1} if implemented without averaging,
#' \code{2/3} if with averaging}
#' \item{\code{one-dim-eigen}}{diagonal matrix
#' \code{lr.control = NULL}}
#' \item{\code{d-dim}}{diagonal matrix
#' \code{lr.control = (epsilon=1e-6)}}
#' \item{\code{adagrad}}{diagonal matrix prescribed in Duchi et al. (2011) as
#' \code{lr.control = (eta=1, epsilon=1e-6)}}
#' \item{\code{rmsprop}}{diagonal matrix prescribed in Tieleman and Hinton
#' (2012) as
#' \code{lr.control = (eta=1, gamma=0.9, epsilon=1e-6)}}
#' }
#'
#' @return
#' An object of class \code{"sgd"}, which is a list containing the following
#' components:
#' \item{model}{name of the model}
#' \item{coefficients}{a named vector of coefficients}
#' \item{converged}{logical. Was the algorithm judged to have converged?}
#' \item{estimates}{estimates from algorithm stored at each iteration
#' specified in \code{pos}}
#' \item{fitted.values}{the fitted mean values}
#' \item{pos}{vector of indices specifying the iteration number each estimate
#' was stored for}
#' \item{residuals}{the residuals, that is response minus fitted values}
#' \item{times}{vector of times in seconds it took to complete the number of
#' iterations specified in \code{pos}}
#' \item{model.out}{a list of model-specific output attributes}
#'
#' @author Dustin Tran, Tian Lan, Panos Toulis, Ye Kuang, Edoardo Airoldi
#' @references
#' John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
#' online learning and stochastic optimization. \emph{Journal of Machine
#' Learning Research}, 12:2121-2159, 2011.
#'
#' Yurii Nesterov. A method for solving a convex programming problem with
#' convergence rate \eqn{O(1/k^2)}. \emph{Soviet Mathematics Doklady},
#' 27(2):372-376, 1983.
#'
#' Boris T. Polyak. Some methods of speeding up the convergence of iteration
#' methods. \emph{USSR Computational Mathematics and Mathematical Physics},
#' 4(5):1-17, 1964.
#'
#' Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic
#' approximation by averaging. \emph{SIAM Journal on Control and Optimization},
#' 30(4):838-855, 1992.
#'
#' Herbert Robbins and Sutton Monro. A stochastic approximation method.
#' \emph{The Annals of Mathematical Statistics}, pp. 400-407, 1951.
#'
#' Panos Toulis, Jason Rennie, and Edoardo M. Airoldi, "Statistical analysis of
#' stochastic gradient methods for generalized linear models", In
#' \emph{Proceedings of the 31st International Conference on Machine Learning},
#' 2014.
#'
#' Panos Toulis, Dustin Tran, and Edoardo M. Airoldi, "Stability and optimality
#' in stochastic gradient descent", arXiv preprint arXiv:1505.02417, 2015.
#'
#' Wei Xu. Towards optimal one pass large scale learning with averaged
#' stochastic gradient descent. arXiv preprint arXiv:1107.2490, 2011.
#'
#' # Dimensions
#' @examples
#' ## Linear regression
#' set.seed(42)
#' N <- 1e4
#' d <- 5
#' X <- matrix(rnorm(N*d), ncol=d)
#' theta <- rep(5, d+1)
#' eps <- rnorm(N)
#' y <- cbind(1, X) %*% theta + eps
#' dat <- data.frame(y=y, x=X)
#' sgd.theta <- sgd(y ~ ., data=dat, model="lm")
#' sprintf("Mean squared error: %0.3f", mean((theta - as.numeric(sgd.theta$coefficients))^2))
#'
#'
#' @useDynLib sgd
#' @import MASS
#' @importFrom methods new
#' @importFrom Rcpp evalCpp
#' @importFrom stats gaussian is.empty.model model.matrix model.response rnorm coef fitted predict
################################################################################
# Classes
################################################################################
#' @export
sgd <- function(x, ...) UseMethod("sgd")
################################################################################
# Methods
################################################################################
#' @export
sgd.default <- function(x, ...) {
stop("class of x is not a formula, function, or matrix")
}
#' @export
#' @rdname sgd
sgd.formula <- function(formula, data, model,
model.control=list(),
sgd.control=list(...),
...) {
call <- match.call() # set call function to match on arguments
# 1. Validity check.
if (missing(data)) {
data <- environment(formula)
}
# 2. Build X and Y according to the formula.
mf <- match.call(expand.dots=FALSE)
m <- match(c("formula", "data"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels
mf[[1L]] <- quote(stats::model.frame)
mf <- eval(mf, parent.frame())
Y <- model.response(mf, "any")
if (length(dim(Y)) == 1L) {
nm <- rownames(Y)
dim(Y) <- NULL
if (!is.null(nm)) {
names(Y) <- nm
}
}
mt <- attr(mf, "terms")
if (!is.empty.model(mt)) {
X <- model.matrix(mt, mf)
} else {
X <- matrix(, NROW(Y), 0L)
}
# 3. Pass into sgd.matrix().
return(sgd.matrix(X, Y, model, model.control, sgd.control))
}
#' @export
#' @rdname sgd
sgd.matrix <- function(x, y, model,
model.control=list(),
sgd.control=list(...),
...) {
call <- match.call() # set call function to match on arguments
if (missing(x)) {
stop("'x' not specified")
}
if (missing(y)) {
stop("'y' not specified")
}
if (missing(model)) {
stop("'model' not specified")
}
if (!is.list(model.control)) {
stop("'model.control' is not a list")
}
model.control <- do.call("valid_model_control",
c(model.control, model=model, d=ncol(x)))
if (!is.list(sgd.control)) {
stop("'sgd.control' is not a list")
}
sgd.control <- do.call("valid_sgd_control",
c(sgd.control, N=NROW(y), nparams=model.control$nparams))
return(fit(x, y, model, model.control, sgd.control))
}
#' @export
#' @rdname sgd
# TODO y should be allowed to be a big matrix too; it should be any combination
# (x is a big matrix, y is, etc.)
sgd.big.matrix <- function(x, y, model,
model.control=list(),
sgd.control=list(...),
...) {
return(sgd.matrix(x, y, model, model.control, sgd.control))
}
################################################################################
# Helper functions
################################################################################
fit <- function(x, y, model,
model.control,
sgd.control) {
#time_start <- proc.time()[3] # TODO timer only starts here
# TODO
if (model == "gmm") {
if (sgd.control$method %in% c("implicit", "ai-sgd")) {
stop("implicit methods not implemented yet")
}
}
if (model %in% c("lm", "glm")) {
model.control$transfer <- transfer_name(model.control$family$link)
family <- model.control$family
model.control$family <- family$family
# Enable logistic regression if response is binary factor.
if (is.factor(y) && family == "binomial") {
y <- as.integer(as.character(y))
}
}
dataset <- list(X=x, Y=as.matrix(y))
if ('big.matrix' %in% class(x)) {
dataset$big <- TRUE
dataset[["bigmat"]] <- x@address
} else {
dataset$big <- FALSE
dataset[["bigmat"]] <- new("externalptr")
}
if (sgd.control$verbose) {
print("Completed pre-processing attributes...")
print("Running C++ algorithm...")
}
out <- run(dataset, model.control, sgd.control)
if (sgd.control$verbose) {
print("Completed C++ algorithm...")
}
if (length(out) == 0) {
stop("An error has occured, program stopped")
}
class(out) <- "sgd"
if (model %in% c("lm", "glm")) {
out$model.out$transfer <- model.control$transfer
out$model.out$family <- family
}
out$pos <- as.vector(out$pos)
#out$times <- as.vector(out$times) + (proc.time()[3] - time_start) # C++ time + R time
out$times <- as.vector(out$times)
out$fitted.values <- predict(out, x, type="response")
out$residuals <- y - fitted(out)
return(out)
}
valid_model_control <- function(model, model.control=list(...), ...) {
# Run validity check of arguments passed to model.control given model. It
# passes defaults to those unspecified and converts to the correct type if
# possible; otherwise it errors.
# Check validity of regularization parameters.
lambda1 <- model.control$lambda1
if (is.null(lambda1)) {
lambda1 <- 0
} else if (!is.numeric(lambda1)) {
stop("'lambda1' must be numeric")
} else if (length(lambda1) != 1) {
stop(gettextf("length of 'lambda1' should equal %d", 1), domain=NA)
}
lambda2 <- model.control$lambda2
if (is.null(lambda2)) {
lambda2 <- 0
} else if (!is.numeric(lambda2)) {
stop("'lambda2' must be numeric")
} else if (length(lambda2) != 1) {
stop(gettextf("length of 'lambda2' should equal %d", 1), domain=NA)
}
nparams <- model.control$d
# Set family to gaussian for linear model.
if (model == "lm") {
model.control$family <- gaussian()
}
if (model %in% c("lm", "glm")) {
control.family <- model.control$family
control.rank <- model.control$rank
control.trace <- model.control$trace
control.deviance <- model.control$deviance
# Check validity of family.
if (is.null(control.family)) {
control.family <- gaussian()
} else if (is.character(control.family)) {
control.family <- get(control.family, mode="function", envir=parent.frame())()
} else if (is.function(control.family)) {
control.family <- control.family()
} else if (is.null(control.family$family)) {
print(control.family)
stop("'family' not recognized")
}
# Check validity of rank.
if (is.null(control.rank)) {
control.rank <- FALSE
} else if (!is.logical(control.rank)) {
stop ("'rank' not logical")
}
# Check validity of trace.
if (is.null(control.trace)) {
control.trace <- FALSE
} else if (!is.logical(control.trace)) {
stop ("'trace' not logical")
}
# Check validity of deviance.
if (is.null(control.deviance)) {
control.deviance <- FALSE
} else if (!is.logical(control.deviance)) {
stop ("'deviance' not logical")
}
return(list(
name=model,
family=control.family,
rank=control.rank,
trace=control.trace,
deviance=control.deviance,
nparams=nparams,
lambda1=lambda1,
lambda2=lambda2))
} else if (model == "cox") {
return(list(
name=model,
nparams=nparams,
lambda1=lambda1,
lambda2=lambda2))
} else if (model == "gmm") {
control.fn <- model.control$fn
control.gr <- model.control$gr
control.nparams <- model.control$nparams
control.type <- model.control$type
control.wmatrix <- model.control$wmatrix
# Check validify of moment function and its gradient.
if (is.null(control.fn) && is.null(control.gr)) {
stop("either 'fn' or 'gr' must be specified")
} else if (!is.null(control.fn) && !is.function(control.fn)) {
stop("'fn' not a function")
} else if (!is.null(control.gr) && !is.function(control.gr)) {
stop("'gr' not a function")
} else if (!is.null(control.fn) && is.null(control.gr)) {
# Default to numerical gradient via central differences.
#library(numDeriv)
# TODO probably does not work
control.gr <- function(x, fn=control.fn) {
d <- length(x)
h <- 1e-5
out <- rep(0, d)
for (i in 1:d) {
ei <- c(rep(0, i-1), h, rep(0, d-i))
out[i] <- (fn(x + ei) - fn(x - ei)) / (2*h)
}
return(out)
}
}
# Check validity of nparams.
if (is.null(control.nparams)) {
stop("'nparams' not specified")
} else if (!is.numeric(control.nparams) ||
control.nparams - as.integer(control.nparams) != 0 ||
control.nparams < 1) {
stop("'nparams' must be a positive integer")
}
# Check validity of GMM type.
if (is.null(control.type)) {
control.type <- "iterative"
} else if (!is.character(control.type)) {
stop("'type' must be a string")
# TODO implement cuee
} else if (!(control.type %in% c("twostep", "iterative", "cuee"))) {
stop("'type' not recognized")
}
# Check validity of weighting matrix.
if (is.null(control.wmatrix)) {
# do nothing, since will not store large matrix in R but in C++
} else if (!is.matrix(control.wmatrix)) {
stop("'wmatrix' not a matrix")
# TODO check if dimensions are same as moment conditions
#} else if (identical(dim(control.wmatrix), c(k,k))) {
}
return(list(
name=model,
gr=control.gr,
type=control.type,
nparams=control.nparams,
lambda1=lambda1,
lambda2=lambda2))
} else if (model == "m") {
control.loss <- model.control$loss
if (is.null(control.loss)) {
control.loss <- "huber"
} else if (!is.character(control.loss)) {
stop ("'model.control$loss' must be a string")
} else if (control.loss != "huber") {
stop ("'loss' not available")
}
return(list(
name=model,
loss=control.loss,
nparams=nparams,
lambda1=lambda1,
lambda2=lambda2))
} else {
stop("model not specified")
}
}
valid_sgd_control <- function(method="ai-sgd", lr="one-dim",
lr.control=NULL,
start=rnorm(nparams, mean=0, sd=1e-5),
size=100,
reltol=1e-5, npasses=3, pass=F,
shuffle=F, verbose=F,
truth=NULL, check=F,
N, nparams, ...) {
# The following are internal parameters that can be used but aren't written in
# the documentation for succinctness:
# check: logical, specifying whether to check against \code{truth} for
# convergence instead of using reltol
# truth: true set of parameters
# TODO size isn't the correct thing since reltol means you don't know when it
# ends. user should specify how often to store the iterates (how many per
# iteration)
# Run validity check of arguments passed to sgd.control. It passes defaults to
# those unspecified and converts to the correct type if possible; otherwise it
# errors.
# Check validity of method.
if (!is.character(method)) {
stop("'method' must be a string")
} else if (!(method %in% c("sgd", "implicit", "asgd", "ai-sgd", "momentum",
"nesterov"))) {
stop("'method' not recognized")
}
# Check validity of learning rate.
lrs <- c("one-dim", "one-dim-eigen", "d-dim", "adagrad", "rmsprop")
if (is.numeric(lr)) {
if (lr < 1 | lr > length(lrs)) {
stop("'lr' out of range")
}
lr <- lrs[lr]
} else if (is.character(lr)) {
lr <- tolower(lr)
if (!(lr %in% lrs)) {
stop("'lr' not recognized")
}
} else {
stop("invalid 'lr'")
}
# Check validity of lr.control.
if (!is.null(lr.control) && !is.numeric(lr.control)) {
stop("'lr.control' must be numeric")
} else if (lr == "one-dim") {
if (method %in% c("asgd", "ai-sgd")) {
c <- 2/3
} else {
c <- 1
}
defaults <- c(1, 1, 1, c)
if (is.null(lr.control)) {
lr.control <- defaults
} else if (length(lr.control) != 4) {
stop(gettextf("length of 'lr.control' should equal %d", 4), domain=NA)
}
missing <- which(is.na(lr.control))
lr.control[missing] <- defaults[missing]
} else if (lr == "one-dim-eigen") {
if (is.null(lr.control)) {
lr.control <- 0 # garbage number to store double in C++
} else if (length(lr.control) != 0) {
stop(gettextf("length of 'lr.control' should equal %d", 0), domain=NA)
}
} else if (lr == "d-dim") {
defaults <- 1e-6
if (is.null(lr.control)) {
lr.control <- defaults
} else if (length(lr.control) != 1) {
stop(gettextf("length of 'lr.control' should equal %d", 1), domain=NA)
}
missing <- which(is.na(lr.control))
lr.control[missing] <- defaults[missing]
} else if (lr == "adagrad") {
defaults <- c(1, 1e-6)
if (is.null(lr.control)) {
lr.control <- defaults
} else if (length(lr.control) != 2) {
stop(gettextf("length of 'lr.control' should equal %d", 2), domain=NA)
}
missing <- which(is.na(lr.control))
lr.control[missing] <- defaults[missing]
} else if (lr == "rmsprop") {
defaults <- c(1, 0.9, 1e-6)
if (is.null(lr.control)) {
lr.control <- defaults
} else if (length(lr.control) != 3) {
stop(gettextf("length of 'lr.control' should equal %d", 3), domain=NA)
}
missing <- which(is.na(lr.control))
lr.control[missing] <- defaults[missing]
}
# Check validity of start.
if (!is.numeric(start)) {
stop("'start' must be numeric")
} else if (length(start) != nparams) {
stop(gettextf("length of 'start' should equal %d", nparams), domain=NA)
}
# Check validity of size.
if (!is.numeric(size) || size - as.integer(size) != 0 || size < 1) {
stop("'size' must be positive integer")
}
# Check validity of reltol
if (!is.numeric(reltol)) {
stop("'reltol' must be numeric")
} else if (length(reltol) != 1) {
stop("'reltol' must be scalar")
}
# Check validity of npasses.
if (!is.numeric(npasses) || npasses - as.integer(npasses) != 0 || npasses < 1) {
stop("'npasses' must be positive integer")
}
# Check validity of pass.
if (!is.logical(pass)) {
stop("'pass' must be logical")
}
# Check validity of shuffle.
if (!is.logical(shuffle)) {
stop("'shuffle' must be logical")
}
# Check validity of verbose.
if (!is.logical(verbose)) {
stop("'verbose' must be logical")
}
# Check validity of additional arguments if the method is implicit.
if (method %in% c("implicit", "ai-sgd")) {
call <- match.call()
implicit.control <- do.call("valid_implicit_control", list(...))
} else {
implicit.control <- NULL
}
# TODO they should be vectors in C++, not requiring conversion
start <- as.matrix(start)
if (check) {
truth <- as.matrix(truth)
}
return(c(list(method=method,
lr=lr,
lr.control=lr.control,
start=start,
size=size,
reltol=reltol,
npasses=npasses,
pass=pass,
shuffle=shuffle,
verbose=verbose,
check=check,
truth=truth,
nparams=nparams),
implicit.control))
}
valid_implicit_control <- function(delta=30L, ...) {
# Maintain control parameters for running implicit SGD. Pass defaults
# if unspecified.
#
# Args:
# delta: convergence criterion for the one-dimensional optimization
args <- list(...)
if (!is.null(names(args))) {
stop("Invalid args passed into sgd.control through dots")
}
if (!is.numeric(delta) || delta - as.integer(delta) != 0 || delta <= 0) {
stop("value of 'delta' must be integer > 0")
}
return(list(delta=delta))
}
transfer_name <- function(link.name) {
if(!is.character(link.name)) {
stop("link name must be a string")
}
link.names <- c("identity", "log", "logit", "inverse")
transfer.names <- c("identity", "exp", "logistic", "inverse")
transfer.idx <- which(link.names == link.name)
if (length(transfer.idx) == 0) {
stop("no match link function founded!")
}
return(transfer.names[transfer.idx])
}