-
Notifications
You must be signed in to change notification settings - Fork 114
/
rknn_matmul_api.h
514 lines (458 loc) · 17.4 KB
/
rknn_matmul_api.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/****************************************************************************
*
* Copyright (c) 2017 - 2018 by Rockchip Corp. All rights reserved.
*
* The material in this file is confidential and contains trade secrets
* of Rockchip Corporation. This is proprietary information owned by
* Rockchip Corporation. No part of this work may be disclosed,
* reproduced, copied, transmitted, or used in any way for any purpose,
* without the express written permission of Rockchip Corporation.
*
*****************************************************************************/
#ifndef _RKNN_MATMUL_API_H
#define _RKNN_MATMUL_API_H
#ifdef __cplusplus
extern "C" {
#endif
#include "rknn_api.h"
typedef rknn_context rknn_matmul_ctx;
typedef struct _rknn_quant_params
{
char name[RKNN_MAX_NAME_LEN];
// matmul tensor scale
float* scale;
int32_t scale_len;
// matmul tensor zero point
int32_t* zp;
int32_t zp_len;
} rknn_quant_params;
typedef enum _rknn_matmul_type
{
RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32 = 1,
RKNN_INT8_MM_INT8_TO_INT32 = 2,
RKNN_INT8_MM_INT8_TO_INT8 = 3,
RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT16 = 4,
RKNN_FLOAT16_MM_INT8_TO_FLOAT32 = 5,
RKNN_FLOAT16_MM_INT8_TO_FLOAT16 = 6,
RKNN_FLOAT16_MM_INT4_TO_FLOAT32 = 7,
RKNN_FLOAT16_MM_INT4_TO_FLOAT16 = 8,
RKNN_INT4_MM_INT4_TO_INT16 = 10,
RKNN_INT8_MM_INT4_TO_INT32 = 11,
} rknn_matmul_type;
inline static const char* get_matmul_type_string(rknn_matmul_type type)
{
switch (type) {
case RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32:
return "RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32";
case RKNN_INT8_MM_INT8_TO_INT32:
return "RKNN_INT8_MM_INT8_TO_INT32";
case RKNN_INT8_MM_INT8_TO_INT8:
return "RKNN_INT8_MM_INT8_TO_INT8";
case RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT16:
return "RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT16";
case RKNN_FLOAT16_MM_INT8_TO_FLOAT32:
return "RKNN_FLOAT16_MM_INT8_TO_FLOAT32";
case RKNN_FLOAT16_MM_INT8_TO_FLOAT16:
return "RKNN_FLOAT16_MM_INT8_TO_FLOAT16";
case RKNN_INT4_MM_INT4_TO_INT16:
return "RKNN_INT4_MM_INT4_TO_INT16";
case RKNN_FLOAT16_MM_INT4_TO_FLOAT32:
return "RKNN_FLOAT16_MM_INT4_TO_FLOAT32";
case RKNN_INT8_MM_INT4_TO_INT32:
return "RKNN_INT8_MM_INT4_TO_INT32";
default:
return "UNKNOW";
}
}
typedef struct _rknn_matmul_tensor_attr
{
char name[RKNN_MAX_NAME_LEN];
// indicate A(M, K) or B(K, N) or C(M, N)
uint32_t n_dims;
uint32_t dims[RKNN_MAX_DIMS];
// matmul tensor size
uint32_t size;
// matmul tensor data type
// int8 : A, B
// int32: C
rknn_tensor_type type;
} rknn_matmul_tensor_attr;
typedef struct _rknn_matmul_io_attr
{
// indicate A(M, K) or B(K, N) or C(M, N)
rknn_matmul_tensor_attr A;
rknn_matmul_tensor_attr B;
rknn_matmul_tensor_attr C;
} rknn_matmul_io_attr;
/*
matmul dynamic shape struct
*/
typedef struct _rknn_matmul_shape
{
int32_t M;
int32_t K;
int32_t N;
} rknn_matmul_shape;
/*
matmul information struct
*/
typedef struct rknn_matmul_info_t
{
int32_t M;
int32_t K; // limit: RK3566/3568: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte;
// RK3562: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte;
// RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte,
// int4 type must be aligned with 32byte;
int32_t N; // limit: RK3566/3568: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte;
// RK3562: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte;
// RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte,
// int4 type must be aligned with 64byte;
// matmul data type
// int4: int4(A) x int4(B) -> int16(C)
// int8: int8(A) x int8(B) -> int32(C)
// float16: float16(A) x float16(B) -> float32(C)
rknn_matmul_type type;
// matmul native layout for B
// 0: normal layout
// 1: native layout
int16_t B_layout;
// matmul quant type for B
// A and C only support per layer
// 0: per layer
// 1: per channel
int16_t B_quant_type;
// matmul native layout for A and C
// 0: normal layout
// 1: native layout
int16_t AC_layout;
// matmul quant type for A and C, only support 0
int16_t AC_quant_type;
// iommu domain id, each domain has 4GB of space
int32_t iommu_domain_id;
// reserved field
int8_t reserved[36];
} rknn_matmul_info;
/* rknn_matmul_create
params:
rknn_matmul_ctx *ctx the handle of context.
rknn_matmul_info *info the matmal information.
rknn_matmul_io_attr *io_attr inputs/output attribute
return:
int error code
*/
int rknn_matmul_create(rknn_matmul_ctx* ctx, rknn_matmul_info* info, rknn_matmul_io_attr* io_attr);
/* rknn_matmul_create_dyn_shape
params:
rknn_matmul_ctx *ctx the handle of context.
rknn_matmul_info *info the matmal information.
int shape_num the supported shape number of matmul.
rknn_matmul_shape dynamic_shapes[] the supported M,K,N shape struct array.
rknn_matmul_io_attr *io_attr the array of inputs and output attribute
return:
int error code
*/
/*
原来的info.M, K, N无效
*/
int rknn_matmul_create_dyn_shape(rknn_matmul_ctx* ctx, rknn_matmul_info* info, int shape_num,
rknn_matmul_shape dynamic_shapes[], rknn_matmul_io_attr io_attrs[]);
/* rknn_matmul_set_io_mem
params:
rknn_matmul_ctx ctx the handle of context.
rknn_tensor_mem *mem the pointer of tensor memory information.
rknn_matmul_tensor_attr *attr the attribute of input or output tensor buffer.
return:
int error code.
formula:
C = A * B,
limit:
K max: k <= 10240
K limit: RK3566/3568: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte;
RK3562: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte;
RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte,
int4 type must be aligned with 32byte;
N limit: RK3566/3568: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte;
RK3562: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte;
RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte,
int4 type must be aligned with 64byte;
A shape: M x K
normal layout: (M, K)
[M1K1, M1K2, ..., M1Kk,
M2K1, M2K2, ..., M2Kk,
...
MmK1, MmK2, ..., MmKk]
for RK3566/3568:
int8:
native layout: (K / 8, M, 8)
[K1M1, K2M1, ..., K8M1,
K9M2, K10M2, ..., K16M2,
...
K(k-7)Mm, K(k-6)Mm, ..., KkMm]
float16:
native layout: (K / 4, M, 4)
[K1M1, K2M1, ..., K4M1,
K9M2, K10M2, ..., K8M2,
...
K(k-3)Mm, K(k-2)Mm, ..., KkMm]
for RK3562:
int8:
native layout: (K / 16, M, 16)
[K1M1, K2M1, ..., K16M1,
K17M2, K18M2, ..., K32M2,
...
K(k-15)Mm, K(k-14)Mm, ..., KkMm]
float16:
native layout: (K / 8, M, 8)
[K1M1, K2M1, ..., K8M1,
K9M2, K10M2, ..., K16M2,
...
K(k-7)Mm, K(k-6)Mm, ..., KkMm]
for RK3588/3576:
int4:
native layout: (K / 32, M, 32)
[K1M1, K2M1, ..., K32M1,
K33M2, K10M2, ..., K64M2,
...
K(k-31)Mm, K(k-30)Mm, ..., KkMm]
int8:
native layout: (K / 16, M, 16)
[K1M1, K2M1, ..., K16M1,
K17M2, K18M2, ..., K32M2,
...
K(k-15)Mm, K(k-14)Mm, ..., KkMm]
float16:
native layout: (K / 8, M, 8)
[K1M1, K2M1, ..., K8M1,
K9M2, K10M2, ..., K16M2,
...
K(k-7)Mm, K(k-6)Mm, ..., KkMm]
B shape: K x N
normal layout: (K, N)
[K1N1, K1N2, ..., K1Nn,
K2N1, K2N2, ..., K2Nn,
...
KkN1, KkN2, ..., KkNn]
for RK3566/3568:
int8:
native layout: (N / 16, K / 32, 16, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N16, K2N16, ..., K32N16,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N16, K(k-30)N16, ..., KkN16,
K1N17, K2N17, ..., K32N17,
K1N18, K2N18, ..., K32N18,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
float16:
native layout: (N / 8, K / 16, 8, 16)
[K1N1, K2N1, ..., K16N1,
K1N2, K2N2, ..., K16N2,
...
K1N8, K2N8, ..., K16N8,
K17N1, K18N1, ..., K32N1,
K17N2, K18N2, ..., K32N2,
...
K(k-15)N8, K(k-30)N8, ..., KkN8,
K1N9, K2N9, ..., K16N9,
K1N10, K2N10, ..., K16N10,
...
K(k-15)Nn, K(k-14)Nn, ..., KkNn]
for RK3562:
int8:
native layout: (N / 16, K / 32, 16, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N16, K2N16, ..., K32N16,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N16, K(k-30)N16, ..., KkN16,
K1N17, K2N17, ..., K32N17,
K1N18, K2N18, ..., K32N18,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
float16:
native layout: (N / 8, K / 32, 8, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N8, K2N8, ..., K32N8,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N8, K(k-30)N8, ..., KkN8,
K1N9, K2N9, ..., K16N9,
K1N10, K2N10, ..., K16N10,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
for RK3588:
when K > 8192, the B data will be split into T segments.
int T = std::ceil(K / 8192);
For example: normal layout -> native layout
K = 20488, N = 4096, T = 3, the data will be split into 3 segments.
subN = rknn_matmul_io_attr.B.dims[2];
subK = rknn_matmul_io_attr.B.dims[3];
(8196, 4096) (4096 / subN, 8196 / subK, subN, subK)
(K, N) = (20488, 4096) -> (8196, 4096) -> (4096 / subN, 8196 / subK, subN, subK)
normal layout (4096, 4096) (4096 / subN, 4096 / subK, subN, subK)
T normal layout T native layout
It is recommended to use the rknn_B_normal_layout_to_native_layout interface for direct data conversion.
for RK3576:
when K > 4096, the B data will be split into T segments.
int T = std::ceil(K / 4096);
For example: normal layout -> native layout
K = 10240, N = 2048, T = 3, the data will be split into 3 segments.
subN = rknn_matmul_io_attr.B.dims[2];
subK = rknn_matmul_io_attr.B.dims[3];
(4096, 2048) (2048 / subN, 4096 / subK, subN, subK)
(K, N) = (10240, 2048) -> (4096, 2048) -> (2048 / subN, 4096 / subK, subN, subK)
normal layout (2048, 2048) (2048 / subN, 2048 / subK, subN, subK)
T normal layout T native layout
It is recommended to use the rknn_B_normal_layout_to_native_layout interface for direct data conversion.
for RK3588/3576:
int4:
native layout: (N / 64, K / 32, 64, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N64, K2N64, ..., K32N64,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N64, K(k-30)N64, ..., KkN64,
K1N65, K2N65, ..., K32N65,
K1N66, K2N66, ..., K32N66,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
int8:
native layout: (N / 32, K / 32, 32, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N32, K2N32, ..., K32N32,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N32, K(k-30)N32, ..., KkN32,
K1N33, K2N33, ..., K32N33,
K1N34, K2N34, ..., K32N34,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
float16:
native layout: (N / 16, K / 32, 16, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N16, K2N16, ..., K32N16,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N16, K(k-30)N16, ..., KkN16,
K1N17, K2N17, ..., K32N17,
K1N18, K2N18, ..., K32N18,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
C shape: M x N
normal layout: (M, N)
[M1N1, M1N2, ..., M1Nn,
M2N1, M2N2, ..., M2Nn,
...
MmN1, MmN2, ..., MmNn]
native layout: (N / 4, M, 4)
[N1M1, N2M1, ..., N4M1,
N5M2, N6M2, ..., N8M2,
...
N(n-3)Mm, N(n-2)Mm, ..., NnMm]
for RK3588:
int4:
native layout: (N / 8, M, 8)
[N1M1, N2M1, ..., N8M1,
N9M2, N10M2, ..., N16M2,
...
N(n-7)Mm, N(n-6)Mm, ..., NnMm]
*/
int rknn_matmul_set_io_mem(rknn_matmul_ctx ctx, rknn_tensor_mem* mem, rknn_matmul_tensor_attr* attr);
/* rknn_matmul_set_core_mask
set rknn core mask.(only support RK3588 in current)
RKNN_NPU_CORE_AUTO: auto mode, default value
RKNN_NPU_CORE_0: core 0 mode
RKNN_NPU_CORE_1: core 1 mode
RKNN_NPU_CORE_2: core 2 mode
RKNN_NPU_CORE_0_1: combine core 0/1 mode
RKNN_NPU_CORE_0_1_2: combine core 0/1/2 mode
input:
rknn_matmul_ctx context the handle of context.
rknn_core_mask core_mask the core mask.
return:
int error code.
*/
int rknn_matmul_set_core_mask(rknn_matmul_ctx context, rknn_core_mask core_mask);
/* rknn_matmul_set_quant_params
set quant params.(only support matmul type RKNN_INT8_MM_INT8_TO_INT8, RKNN_INT8_MM_INT8_TO_INT32)
input:
rknn_matmul_ctx context the handle of context.
rknn_quant_params params quant params.
return:
int error code.
*/
int rknn_matmul_set_quant_params(rknn_matmul_ctx context, rknn_quant_params* params);
/* rknn_matmul_get_quant_params
get per channel quant params.(only support matmul type RKNN_INT8_MM_INT8_TO_INT32)
input:
rknn_matmul_ctx context the handle of context.
rknn_quant_params params quant params.
float scale get scale for user.
return:
int error code.
*/
int rknn_matmul_get_quant_params(rknn_matmul_ctx ctx, rknn_quant_params* params, float* scale);
/* rknn_matmul_set_dynamic_shape
set the matmul input/output shape. matmul will run under current input shape after rknn_matmul_set_dynamic_shape,
only support M dynamicly now.
input:
rknn_matmul_ctx ctx the handle of context.
rknn_matmul_shape* shape the M,K,N shape of matmul currently
return:
int error code.
*/
int rknn_matmul_set_dynamic_shape(rknn_matmul_ctx ctx, rknn_matmul_shape* shape);
/* rknn_matmul_run
run the matmul in blocking mode
params:
rknn_matmul_ctx ctx the handle of context.
return:
int error code.
*/
int rknn_matmul_run(rknn_matmul_ctx ctx);
/* rknn_matmul_destroy
destroy the matmul context
params:
rknn_matmul_ctx ctx the handle of context.
return:
int error code.
*/
int rknn_matmul_destroy(rknn_matmul_ctx ctx);
/* rknn_B_normal_layout_to_native_layout
change the B normal layout buffer to native layout buffer
params:
void* B_input B normal layout buffer.
void* B_output B native layout buffer.
int K K
int N N
int subN subN
int subK subK
rknn_matmul_type type matmul type
return:
int error code.
*/
int rknn_B_normal_layout_to_native_layout(void* B_input, void* B_output, int K, int N, int subN, int subK,
rknn_matmul_type type);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // _RKNN_MATMUL_API_H