-
Notifications
You must be signed in to change notification settings - Fork 5
/
eval.py
244 lines (206 loc) · 8.01 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# --------------------------------------------------------
# What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? (https://arxiv.org/abs/2403.06090)
# Github source: https://github.com/aim-uofa/GenPercept
# Copyright (c) 2024, Advanced Intelligent Machines (AIM)
# Licensed under The BSD 2-Clause License [see LICENSE for details]
# Author: Guangkai Xu (https://github.com/guangkaixu/)
# --------------------------------------------------------------------------
# This code is based on Marigold and diffusers codebases
# https://github.com/prs-eth/marigold
# https://github.com/huggingface/diffusers
# --------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/aim-uofa/GenPercept#%EF%B8%8F-citation
# More information about the method can be found at https://github.com/aim-uofa/GenPercept
# --------------------------------------------------------------------------
import argparse
import logging
import os
import numpy as np
import torch
from omegaconf import OmegaConf
from tabulate import tabulate
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from src.dataset import (
BaseDataset,
DatasetMode,
get_dataset,
get_pred_name,
)
from src.util import metric
from src.util.alignment import (
align_depth_least_square,
depth2disparity,
disparity2depth,
)
from src.util.metric import MetricTracker
eval_metrics = [
"abs_relative_difference",
"squared_relative_difference",
"rmse_linear",
"rmse_log",
"log10",
"delta1_acc",
"delta2_acc",
"delta3_acc",
"i_rmse",
"silog_rmse",
]
if "__main__" == __name__:
parser = argparse.ArgumentParser()
# input
parser.add_argument(
"--prediction_dir",
type=str,
required=True,
help="Directory of depth predictions",
)
parser.add_argument(
"--output_dir", type=str, required=True, help="Output directory."
)
# dataset setting
parser.add_argument(
"--dataset_config",
type=str,
required=True,
help="Path to config file of evaluation dataset.",
)
parser.add_argument(
"--base_data_dir",
type=str,
required=True,
help="Path to base data directory.",
)
# LS depth alignment
parser.add_argument(
"--alignment",
choices=[None, "least_square", "least_square_disparity"],
default=None,
help="Method to estimate scale and shift between predictions and ground truth.",
)
parser.add_argument(
"--alignment_max_res",
type=int,
default=None,
help="Max operating resolution used for LS alignment",
)
parser.add_argument("--no_cuda", action="store_true", help="Run without cuda")
args = parser.parse_args()
prediction_dir = args.prediction_dir
output_dir = args.output_dir
dataset_config = args.dataset_config
base_data_dir = args.base_data_dir
alignment = args.alignment
alignment_max_res = args.alignment_max_res
no_cuda = args.no_cuda
pred_suffix = ".npy"
os.makedirs(output_dir, exist_ok=True)
# -------------------- Device --------------------
cuda_avail = torch.cuda.is_available() and not no_cuda
device = torch.device("cuda" if cuda_avail else "cpu")
logging.info(f"Device: {device}")
# -------------------- Data --------------------
cfg_data = OmegaConf.load(dataset_config)
dataset: BaseDataset = get_dataset(
cfg_data, base_data_dir=base_data_dir, mode=DatasetMode.EVAL
)
dataloader = DataLoader(dataset, batch_size=1, num_workers=0)
# -------------------- Eval metrics --------------------
metric_funcs = [getattr(metric, _met) for _met in eval_metrics]
metric_tracker = MetricTracker(*[m.__name__ for m in metric_funcs])
metric_tracker.reset()
# -------------------- Per-sample metric file head --------------------
per_sample_filename = os.path.join(output_dir, "per_sample_metrics.csv")
# write title
with open(per_sample_filename, "w+") as f:
f.write("filename,")
f.write(",".join([m.__name__ for m in metric_funcs]))
f.write("\n")
# -------------------- Evaluate --------------------
for data in tqdm(dataloader, desc="Evaluating"):
# GT data
depth_raw_ts = data["depth_raw_linear"].squeeze()
valid_mask_ts = data["valid_mask_raw"].squeeze()
rgb_name = data["rgb_relative_path"][0]
depth_raw = depth_raw_ts.numpy()
valid_mask = valid_mask_ts.numpy()
depth_raw_ts = depth_raw_ts.to(device)
valid_mask_ts = valid_mask_ts.to(device)
# Load predictions
rgb_basename = os.path.basename(rgb_name)
pred_basename = get_pred_name(
rgb_basename, dataset.name_mode, suffix=pred_suffix
)
pred_name = os.path.join(os.path.dirname(rgb_name), pred_basename)
pred_path = os.path.join(prediction_dir, pred_name)
depth_pred = np.load(pred_path)
if not os.path.exists(pred_path):
logging.warn(f"Can't find prediction: {pred_path}")
continue
# Align with GT using least square
if "least_square" == alignment:
depth_pred, scale, shift = align_depth_least_square(
gt_arr=depth_raw,
pred_arr=depth_pred,
valid_mask_arr=valid_mask,
return_scale_shift=True,
max_resolution=alignment_max_res,
)
elif "least_square_disparity" == alignment:
# convert GT depth -> GT disparity
gt_disparity, gt_non_neg_mask = depth2disparity(
depth=depth_raw, return_mask=True
)
# LS alignment in disparity space
pred_non_neg_mask = depth_pred > 0
valid_nonnegative_mask = valid_mask & gt_non_neg_mask & pred_non_neg_mask
disparity_pred, scale, shift = align_depth_least_square(
gt_arr=gt_disparity,
pred_arr=depth_pred,
valid_mask_arr=valid_nonnegative_mask,
return_scale_shift=True,
max_resolution=alignment_max_res,
)
# convert to depth
disparity_pred = np.clip(
disparity_pred, a_min=1e-3, a_max=None
) # avoid 0 disparity
depth_pred = disparity2depth(disparity_pred)
# Clip to dataset min max
depth_pred = np.clip(
depth_pred, a_min=dataset.min_depth, a_max=dataset.max_depth
)
# clip to d > 0 for evaluation
depth_pred = np.clip(depth_pred, a_min=1e-6, a_max=None)
# Evaluate (using CUDA if available)
sample_metric = []
depth_pred_ts = torch.from_numpy(depth_pred).to(device)
for met_func in metric_funcs:
_metric_name = met_func.__name__
_metric = met_func(depth_pred_ts, depth_raw_ts, valid_mask_ts).item()
sample_metric.append(_metric.__str__())
metric_tracker.update(_metric_name, _metric)
# Save per-sample metric
with open(per_sample_filename, "a+") as f:
f.write(pred_name + ",")
f.write(",".join(sample_metric))
f.write("\n")
# -------------------- Save metrics to file --------------------
eval_text = f"Evaluation metrics:\n\
of predictions: {prediction_dir}\n\
on dataset: {dataset.disp_name}\n\
with samples in: {dataset.filename_ls_path}\n"
eval_text += f"min_depth = {dataset.min_depth}\n"
eval_text += f"max_depth = {dataset.max_depth}\n"
eval_text += tabulate(
[metric_tracker.result().keys(), metric_tracker.result().values()]
)
metrics_filename = "eval_metrics"
if alignment:
metrics_filename += f"-{alignment}"
metrics_filename += ".txt"
_save_to = os.path.join(output_dir, metrics_filename)
with open(_save_to, "w+") as f:
f.write(eval_text)
logging.info(f"Evaluation metrics saved to {_save_to}")