forked from mgimond/Spatial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
A02-Mapping-data.Rmd
executable file
·579 lines (403 loc) · 25.7 KB
/
A02-Mapping-data.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# Mapping data in R
```{r, echo = FALSE}
source("package_list.R")
get.pckg.info("A02-Mapping-data.Rmd")
```
There are many mapping environments that can be adopted in R. Three are presented in this tutorial: `tmap`, `ggplot2` and `plot_sf`.
## Sample files for this exercise {-}
Data used in the following exercises can be loaded into your current R session by running the following chunk of code.
```{r}
library(sf)
library(terra)
z <- gzcon(url("https://github.com/mgimond/Spatial/raw/main/Data/elev.RDS"))
elev.r <- unwrap(readRDS(z))
z <- gzcon(url("https://github.com/mgimond/Spatial/raw/main/Data/inter_sf.RDS"))
inter.sf <- readRDS(z)
z <- gzcon(url("https://github.com/mgimond/Spatial/raw/main/Data/rail_sf.RDS"))
rail.sf <- readRDS(z)
z <- gzcon(url("https://github.com/mgimond/Spatial/raw/main/Data/s_sf.RDS"))
s.sf <- readRDS(z)
z <- gzcon(url("https://github.com/mgimond/Spatial/raw/main/Data/p_sf.RDS"))
p.sf <- readRDS(z)
```
The data objects consist of five layers: an elevation raster (`elev.r`), an interstate polyline layer (`inter.sf`), a point cities layer (p.sf), a railroad polyline layer (`rail.sf`) and a Maine counties polygon layer (`s.sf`). All vector layers are `sf` objects. All layers are in a UTM/NAD83 projection (Zone 19N) except `p.sf` which is in a WGS 1984 geographic coordinate system.
## `tmap` {-}
The `tmap` package is specifically developed for mapping spatial data. As such, it offers the greatest mapping options. The package recognizes `sf`, `raster` and `Spatial*` objects.
### The basics {-}
To map the counties polygon layer using a grey color scheme, type:
```{r fig.height=2.8, fig.width=3.5}
library(tmap)
tm_shape(s.sf) + tm_polygons(col="grey", border.col="white")
```
The `tm_shape` function loads the spatial object (vector or raster) into the mapping session. The `tm_polygons` function is one of many `tmap` functions that dictates how the spatial object is to be mapped. The `col` parameter defines either the polygon fill color or the spatial object's attribute column to be used to define the polygons' color scheme. For example, to use the `Income` attribute value to define the color scheme, type:
```{r fig.height=2.8, fig.width=3.5}
tm_shape(s.sf) + tm_polygons(col="Income", border.col = "white")
```
Note the `+` symbol used to piece together the functions (this is similar to the `ggplot2` syntax).
You can customize the map by piecing together various map element functions. For example, to move the legend box outside of the main map body add the `tm_legend(outside = TRUE)` function to the mapping operation.
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) + tm_polygons("Income", border.col = "white") +
tm_legend(outside = TRUE)
```
You can also choose to omit the legend box (via the `legend.show = FALSE` parameter) and the data frame border (via the `tm_layout(frame = FALSE)` function):
```{r fig.height=2.8, fig.width=3.5}
tm_shape(s.sf) +
tm_polygons("Income", border.col = "white", legend.show=FALSE) +
tm_layout(frame = FALSE)
```
If you want to omit the polygon border lines from the plot, simply add the `border.col = NULL` parameter to the `tm_polygons` function.
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("Income", border.col = NULL) +
tm_legend(outside = TRUE)
```
Note that the `tm_fill` function is nearly identical to the `tm_polygons` function with the difference being that the `tm_fill` function does not draw polygon borders.
### Combining layers {-}
You can easily stack layers by piecing together additional `tm_shape`functions. In the following example, the railroad layer and the point layer are added to the income map. The railroad layer is mapped using the `tm_lines` function and the cities point layer is mapped using the `tm_dots` function. Note that layers are pieced together using the `+` symbol.
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("Income", border.col = NULL) +
tm_legend(outside = TRUE) +
tm_shape(rail.sf) + tm_lines(col="grey70") +
tm_shape(p.sf) + tm_dots(size=0.3, col="black")
```
Layers are stacked in the order in which they are listed. In the above example, the point layer is the last layer called therefore it is drawn on top of the previously drawn layers.
Note that if a layer's coordinate system is properly defined, `tmap` will reproject, on-the-fly, any layer whose coordinate system does not match that of the first layer in the stack. In this example, `s.sf` defines the map's coordinate system (UTM/NAD83). `p.sf` is in a geographic coordinate system and is thus reprojected on-the-fly to properly overlap the other layers in the map.
### Tweaking classification schemes {-}
You can control the classification type, color scheme, and bin numbers via the `tm_polygons` function. For example, to apply a quantile scheme with 6 bins and varying shades of green, type:
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("Income", style = "quantile", n = 6, palette = "Greens") +
tm_legend(outside = TRUE)
```
Other `style` classification schemes include `fixed`, `equal`, `jenks`, `kmeans` and `sd`. If you want to control the breaks manually set `style=fixed` and specify the classification breaks using the `breaks` parameter. For example,
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("Income", style = "fixed",palette = "Greens",
breaks = c(0, 23000, 27000, 100000 )) +
tm_legend(outside = TRUE)
```
If you want a bit more control over the legend elements, you can tweak the `labels` parameter as in,
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("Income", style = "fixed",palette = "Greens",
breaks = c(0, 23000, 27000, 100000 ),
labels = c("under $23,000", "$23,000 to $27,000", "above $27,000"),
text.size = 1) +
tm_legend(outside = TRUE)
```
### Tweaking colors {-}
There are many color schemes to choose from, but you will probably want to stick to color swatches established by [Cynthia Brewer](http://colorbrewer2.org). These palettes are available in `tmap` and their names are listed below.
For **sequential** color schemes, you can choose from the following palettes.
```{r echo = FALSE, fig.height = 4.0, fig.width = 4}
OP <- par (mar=c(0,5,0,0))
RColorBrewer::display.brewer.all(5, type="seq")
par(OP)
```
For **divergent** color schemes, you can choose from the following palettes.
```{r echo = FALSE, fig.height =2.2, fig.width = 4}
OP <- par (mar=c(0,5,0,0))
RColorBrewer::display.brewer.all(5, type="div")
par(OP)
```
For **categorical** color schemes, you can choose from the following palettes.
```{r echo = FALSE, fig.height =2.2, fig.width = 4}
OP <- par (mar=c(0,5,0,0))
RColorBrewer::display.brewer.all(5, type="qual")
par(OP)
```
For example, to map the county names using the `Pastel1` categorical color scheme, type:
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NAME", palette = "Pastel1") +
tm_legend(outside = TRUE)
```
To map the percentage of the population not having attained a high school degree (column labeled `NoSchool` in `s.sf`) using a `YlOrBr` palette with 8 bins while modifying the legend title to read _"Fraction without a HS degree"_, type:
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NoSchool", style="quantile", palette = "YlOrBr", n=8,
title="Fraction without \na HS degree") +
tm_legend(outside = TRUE)
```
The character `\n` in the "`Fraction without \na HS degree`" string is interpreted by R as a _new line_ (carriage return).
If you want to reverse the color scheme simply add the minus symbol `-` in front of the palette name as in `palette = "-YlOrBr"`
### Adding labels {-}
You can add text and labels using the `tm_text` function. In the following example, point labels are added to the right of the points with the text left justified (`just = "left"`) and with an x offset of 0.5 units for added buffer between the point and the text.
```{r fig.height=3, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NAME", palette = "Pastel1", border.col = "white") +
tm_legend(outside = TRUE) +
tm_shape(p.sf) +
tm_dots(size= .3, col = "red") +
tm_text("Name", just = "left", xmod = 0.5, size = 0.8)
```
The `tm_text` function accepts an auto placement option via the parameter `auto.placement = TRUE`. This uses a simulated annealing algorithm. Note that this automated approach may not generate the same text placement after each run.
### Adding a grid or graticule {-}
You can add a grid or graticule to the map using the `tm_grid` function. You will need to modify the map's default viewport setting via the `tm_layout` function to provide space for the grid labels. In the following example, the grid is generated using the layer's UTM coordinate system and is divided into roughly four segments along the x-axis and five segments along the y-axis. The function will adjust the grid placement so as to generate "pretty" label values.
```{r fig.height=3, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NAME", palette = "Pastel1") +
tm_legend(outside = TRUE) +
tm_layout(outer.margins = c(.1,.1,.1,.1)) +
tm_grid(labels.inside.frame = FALSE,
n.x = 4, n.y = 5)
```
To generate a graticule (lines of latitude and longitude), simply modify the grid's coordinate system to a geographic one using either an [EPSG](https://spatialreference.org/ref/epsg/) defined coordinate system, or a [PROJ4](https://proj4.org/apps/proj.html) formatted string. But note that the `PROJ` string syntax is falling out of favor in current and future R spatial environments so, if possible, adopt an EPSG (or OGC) code. Here, we'll use `EPSG:4326` which defines the WGS 1984 geographic coordinate system.
We will also modify the grid placement by explicitly specifying the lat/long grid values.
```{r fig.height=3, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NAME", palette = "Pastel1") +
tm_legend(outside = TRUE) +
tm_layout(outer.margins = c(.1,.1,.1,.1)) +
tm_grid(labels.inside.frame = FALSE,
x = c(-70.5, -69, -67.5),
y = c(44, 45, 46, 47),
projection = "EPSG:4326")
```
Adding the ° symbol to the lat/long values requires a bit more code:
```{r fig.height=3, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NAME", palette = "Pastel1") +
tm_legend(outside = TRUE) +
tm_layout(outer.margins = c(.1,.1,.1,.1)) +
tm_grid(labels.inside.frame = FALSE,
x = c(-70.5, -69, -67.5) ,
y = c(44, 45, 46, 47),
projection = "+proj=longlat",
labels.format = list(fun=function(x) {paste0(x,intToUtf8(176))} ) )
```
Here, we use the unicode *decimal* representation of the ° symbol (unicode *176*) and pass it to the `intToUtf8` function. A list of unicode characters and their decimal representation can be found on this [Wikipedia](https://en.wikipedia.org/wiki/List_of_Unicode_characters#Latin-1_Supplement) page.
### Adding statistical plots {-}
A histogram of the variables being mapped can be added to the legend element. By default, the histogram will inherit the colors used in the classification scheme.
```{r fig.height=2.8, fig.width=5}
tm_shape(s.sf) +
tm_polygons("NoSchool", palette = "YlOrBr", n = 6,
legend.hist = TRUE, title = "% no school") +
tm_legend(outside = TRUE, hist.width = 2)
```
### Mapping raster files {-}
Raster objects can be mapped by specifying the `tm_raster` function. For example to plot the elevation raster and assign 64 continuous shades of the built-in terrain color ramp, type:
```{r fig.height=3, fig.width=5, results='hide'}
tm_shape(elev.r) +
tm_raster(style = "cont", title = "Elevation (m)",
palette = terrain.colors(64))+
tm_legend(outside = TRUE)
```
Note the use of another `style` parameter option: `cont` for *continuous* color scheme.
You can choose to symbolize the raster using classification breaks instead of continuous colors. For example, to manually set the breaks to 50, 100, 500, 750, 1000, and 15000 meters, type:
```{r fig.height=3, fig.width=5, results='hide'}
tm_shape(elev.r) +
tm_raster(style = "fixed", title = "Elevation (m)",
breaks = c(0, 50, 100, 500, 750, 1000, 15000),
palette = terrain.colors(5))+
tm_legend(outside = TRUE)
```
Other color gradients that R offers include, `heat.colors`, `rainbow`, and `topo.colors`. You can also create your own color ramp via the `colorRampPalette` function. For example, to generate a 12 bin quantile classification scheme using a color ramp that changes from `darkolivegreen4` to `yellow` to `brown` (these are built-in R colors), and adding a histogram to view the distribution of colors across pixels, type:
```{r fig.height=3, fig.width=5, results='hide'}
tm_shape(elev.r) +
tm_raster(style = "quantile", n = 12, title = "Elevation (m)",
palette = colorRampPalette( c("darkolivegreen4","yellow", "brown"))(12),
legend.hist = TRUE)+
tm_legend(outside = TRUE, hist.width = 2)
```
Note that the Brewer palette names can also be used with rasters.
### Changing coordinate systems {-}
`tmap` can change the output's coordinate system without needing to reproject the data layers. In the following example, the elevation raster, railroad layer and point city layer are mapped onto a *USA Contiguous Albers Equal Area Conic* projection. A lat/long grid is added as a reference.
```{r fig.height=3, fig.width=5, results='hide'}
# Define the Albers coordinate system
aea <- "+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96 +ellps=GRS80 +datum=NAD83"
# Map the data
tm_shape(elev.r, projection = aea) +
tm_raster(style = "quantile", n = 12,
palette = colorRampPalette( c("darkolivegreen4","yellow", "brown"))(12),
legend.show = FALSE) +
tm_shape(rail.sf) + tm_lines(col = "grey70")+
tm_shape(p.sf) +tm_dots(size=0.5) +
tm_layout(outer.margins = c(.1,.1,.1,.1)) +
tm_grid(labels.inside.frame = FALSE,
x = c(-70.5, -69, -67.5),
y = c(44, 45, 46, 47),
projection = "+proj=longlat")
```
The first data layer's `projection=` parameter will define the map's coordinate system. Note that this parameter does not need to be specified in the other layers taking part in the output map.
If a projection is not explicitly defined in the first call to `tm_shape`, then the output map will default to the first layer's reference system.
### Side-by-side maps {-}
You can piece maps together side-by-side using the `tmap_arrange` function. You first need to save each map to a separate object before combining them. For example:
```{r fig.height=3, fig.width=13}
inc.map <- tm_shape(s.sf) + tm_polygons(col="Income")+
tm_legend(outside=TRUE)
school.map <- tm_shape(s.sf) + tm_polygons(col="NoSchool")+
tm_legend(outside=TRUE)
name.map <- tm_shape(s.sf) + tm_polygons(col="NAME")+
tm_legend(outside=TRUE)
tmap_arrange(inc.map, school.map, name.map)
```
### Splitting data by polygons or group of polygons {-}
You can split the output into groups of features based on a column attribute. For example, to split the income map into individual polygons via the `NAME` attribute, type:
```{r fig.height=3, fig.width=13}
tm_shape(s.sf) + tm_polygons(col = "Income") +
tm_legend(outside = TRUE) +
tm_facets( by = "NAME", nrow = 2)
```
The order of the faceted plot follows the alphanumeric order of the faceting attribute values. If you want to change the faceted order, you will need to change the attribute's [level order](https://mgimond.github.io/ES218/Week02a.html#Rearranging_level_order).
## `ggplot2` {-}
If you are already familiar with `ggplot2`, you will find it easy to transition to spatial data visualization. The key *geom* used when mapping spatial data is `geom_sf()`.
### The basics {-}
If you wish to simply plot the geometric elements of a layer, type:
```{r fig.height=2.8, fig.width=3.5}
library(ggplot2)
ggplot(data = s.sf) + geom_sf()
```
As with any ggplot operation, you can also pass the object's name to the `geom_sf()` instead of the `ggplot` function as in:
```{r eval = FALSE}
ggplot() + geom_sf(data = s.sf)
```
This will prove practical later in this exercise when multiple layers are plotted on the map.
By default, `ggplot` will add a graticule to the plot, even if the coordinate system associated with the layer is in a projected coordinate system. You can adopt any one of `ggplot2`'s gridline removal strategies to eliminate the grid from the plot. Here, we'll make use of the `theme_void()` function.
```{r fig.height=2.8, fig.width=3.5}
ggplot(data = s.sf) + geom_sf() + theme_void()
```
If you want to have ggplot adopt the layer's native coordinate system (UTM NAD 1983 in this example) instead of the default geographic coordinate system, type:
```{r fig.height=2.8, fig.width=3.5}
ggplot(data = s.sf) + geom_sf() + coord_sf(datum = NULL)
```
Or, you can explicitly assign the data layer's datum via a call to `st_crs` as in `... + coord_sf(datum = st_crs(s.sf))`
By setting `datum` to `NULL`, you prevent ggplot from figuring out how to convert the layer's native coordinate system to a geographic one.
You can control grid/graticule intervals using ggplot's `scale_..._continuous` functions. For example:
```{r fig.height=2.8, fig.width=3.5}
ggplot(data = s.sf) + geom_sf() +
scale_x_continuous(breaks = c(-70, -69, -68)) +
scale_y_continuous(breaks = 44:47)
```
If you wish to apply a grid native to the layer's coordinate system, type:
```{r fig.height=2.8, fig.width=3.5}
ggplot(data = s.sf) + geom_sf() +
coord_sf(datum = NULL) +
scale_x_continuous(breaks = c(400000, 500000, 600000)) +
scale_y_continuous(breaks = c(4900000, 5100000))
```
To symbolize a layer's geometries using one of the layer's attributes, add the `aes()` function.
```{r fig.height=2.8, fig.width=3.5}
ggplot(data = s.sf, aes(fill = Income)) + geom_sf()
```
Note that the data and aesthetics can be defined in the `geom_sf` function as well:
```{r eval = FALSE}
ggplot() + geom_sf(data = s.sf, aes(fill = Income))
```
To change the border color, type:
```{r fig.height=2.8, fig.width=3.5}
ggplot(data = s.sf, aes(fill = Income)) +
geom_sf(col = "white")
```
To remove outlines, simply pass `NA` to `col` (e.g. `col = NA`) in the `geom_sf` function.
### Tweaking classification schemes {-}
To bin the color scheme by assigning ranges of income values to a unique set of color swatches defined by hex values, use one of the `scale_fill_steps*` family of functions.
```{r fig.height=2.8, fig.width=3.5}
ggplot(data = s.sf, aes(fill = Income)) + geom_sf() +
scale_fill_stepsn(colors = c("#D73027", "#FC8D59", "#FEE08B",
"#D9EF8B", "#91CF60") ,
breaks = c(22000, 25000, 27000, 30000))
```
You can adopt Brewer's color schemes by applying one of the `scale_..._fermenter()` functions and specifying the classification type (sequential, `seq`; divergent, `div`; or categorical, `qual`) and the palette name. For example, to adopt a divergent color scheme using the `"PRGn"` colors, type:
```{r fig.height=2.8, fig.width=3.5}
ggplot(data = s.sf, aes(fill = Income)) + geom_sf() +
scale_fill_fermenter(type = "div", palette = "PRGn", n.breaks = 4)
```
The flip the color scheme set `direction` to `1`.
```{r fig.height=2.8, fig.width=3.5}
ggplot(data = s.sf, aes(fill = Income)) + geom_sf() +
scale_fill_fermenter(type = "div", palette = "PRGn", n.breaks = 4, direction = 1)
```
ggplot offers many advanced options. For example, we can modify the bin intervals by generating a non-uniform classification scheme and scale the legend bar so as to reflect the non-uniform intervals using the `guide_coloursteps()` function and its `even.steps = FALSE` argument. We’ll also modify the legend bar dimensions and title in this code chunk.
```{r fig.height=2.8, fig.width=3.5}
ggplot(data = s.sf, aes(fill = Income)) + geom_sf() +
scale_fill_stepsn(colors = c("#D73027", "#FC8D59", "#FEE08B",
"#D9EF8B", "#91CF60", "#1A9850") ,
breaks = c(22000, 25000, 26000, 27000, 30000),
values = scales::rescale(c(22000, 25000, 26000, 27000, 30000), c(0,1)),
guide = guide_coloursteps(even.steps = FALSE,
show.limits = TRUE,
title = "Per capita Income \n(US dollars)",
barheight = unit(2.2, "in"),
barwidth = unit(0.15, "in")))
```
### Combining layers {-}
You can overlap layers in the map by adding calls to `geom_sf`. In such a scenario, it might be best for readability sake to specify the layer name in the `geom_sf` function instead of the `ggplot` function.
```{r fig.height=2.8, fig.width=3.5}
ggplot() +
geom_sf(data = s.sf, aes(fill = Income)) +
geom_sf(data = rail.sf, col = "white") +
geom_sf(data = p.sf, col = "green")
```
Note that ggplot will convert coordinate systems on-the-fly as needed. Here, `p.sf` is in a coordinate system different from the other layers.
You can also add raster layers to the map. However, the raster layer must be in a dataframe format with `x`, `y` and `z` columns. The `elev.r` raster is in a `SpatRaster` format and will need to be converted to a dataframe using the `as.data.frame` function from the `raster` package. This function has a special method for raster layers, as such, it adds parameters unique to this method. These include `xy = TRUE` which instructs the function to create x and y coordinate columns from the data, and `na.rm = TRUE` which removes blank cells (this will help reduce the size of our dataframe given that `elev.r` does not fill its extent's rectangular outline).
Since the layers are drawn in the order listed, we will move the `rail.sf` vector layer to the bottom of the stack.
```{r fig.height=2.8, fig.width=3.5}
ggplot() +
geom_raster(data = as.data.frame(elev.r, xy=TRUE, na.rm = TRUE),
aes(x = x, y = y, fill = elev)) +
scale_fill_gradientn(colours = terrain.colors(7)) +
geom_sf(data = rail.sf, col = "white") +
geom_sf(data = p.sf, col = "black") +
theme(axis.title = element_blank()) # Removes axes labels
```
## `plot_sf` {-}
The `sf` package has its own plot method. This is a convenient way to generate simple plots without needing additional plotting packages.
### The basics {-}
By default, when passing an `sf` object to `plot, the function will generate as may plots as there are attribute columns. For example
```{r fig.height=4.0, fig.width=3.5}
plot(s.sf)
```
To limit the plot to just one of the attribute columns, limit the dataset using basic R indexing techniques. For example, to plot the `Income` column, type
```{r fig.height=2.8, fig.width=3.5}
plot(s.sf["Income"])
```
To limit the output to just the layer's geometry, wrap the object name with the `st_geometry` function.
```{r fig.height=2.8, fig.width=3.5, echo = 2}
OP <- par(mar = c(1,1,0,0))
plot(st_geometry(s.sf))
par(OP)
```
You can control the fill and border colors using the `col` and `border` parameters respectively.
```{r fig.height=2.8, fig.width=3.5, echo = 2}
OP <- par(mar = c(1,1,0,0))
plot(st_geometry(s.sf), col ="grey", border = "white")
par(OP)
```
### Adding a graticule {-}
You can add a graticule by setting the graticule parameter to `TRUE`. To add graticule labels, set `axes` to `TRUE`.
```{r fig.height=2.8, fig.width=3.3, echo = 2}
OP <- par(mar = c(2,2,2,2), cex = 0.7)
plot(st_geometry(s.sf), col ="grey", border = "white", graticule = TRUE, axes= TRUE)
par(OP)
```
### Combining layers {-}
To add layers, generate a new call to `plot` with the `add` parameter set to `TRUE`. For example, to add `rail.sf` and `p.sf` to the map, type:
```{r fig.height=2.8, fig.width=3.3, echo = 2:3}
OP <- par(mar = c(2,2,2,2), cex = 0.7)
plot(st_geometry(s.sf), col ="grey", border = "white", graticule = TRUE, axes= TRUE)
plot(rail.sf, col = "grey20", add = TRUE)
par(OP)
```
Note that `plot_sf` requires that the layers be in the same coordinate system. For example, adding `p.sf` will not show the points on the map given that it's in a different coordinate system.
`sf` layers can be combined with raster layers. The order in which layers are listed will matter. You will usually want to map the raster layer first, then add the vector layer(s).
```{r fig.height=2.8, fig.width=3.3, echo = 2:3}
OP <- par(mar = c(2,2,2,2), cex = 0.7)
plot(elev.r, col = terrain.colors(30))
plot(st_geometry(rail.sf), col ="grey", border = "white", add = TRUE)
par(OP)
```
### Tweaking colors {-}
You can tweak the color schemes as well as the legend display. The latter will require the use of R's built-in `par` function whereby the `las = 1` parameter will render the key labels horizontal, and the `omi` parameter will prevent the legend labels from being cropped.
```{r fig.height=2.8, fig.width=3.8, echo = 2:4, fig.show='hold'}
OP2 <- par(mar = c(2,2,2,2))
OP <- par(las = 1, omi=c(0,0,0,0.6))
p1 <- plot(s.sf["Income"], breaks = c(20000, 22000, 25000, 26000, 27000, 30000, 33000),
pal = c("#D73027", "#FC8D59", "#FEE08B",
"#D9EF8B", "#91CF60", "#1A9850"),
key.width = 0.2,
at = c(20000, 22000, 25000, 26000, 27000, 30000, 33000))
par(OP)
par(OP2)
```
While `plot_sf` offers succinct plotting commands and independence from other mapping packages, it is limited in its customization options.