-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcosts.py
58 lines (40 loc) · 1.73 KB
/
costs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import logging
import numpy as np
from keras import backend as K
log = logging.getLogger()
def dice(y_true, y_pred, binarise=False, smooth=0.1):
y_pred = y_pred[..., 0:y_true.shape[-1]]
# Cast the prediction to binary 0 or 1
if binarise:
y_pred = np.round(y_pred)
# Symbolically compute the intersection
y_int = y_true * y_pred
return np.mean((2 * np.sum(y_int, axis=(1, 2, 3)) + smooth)
/ (np.sum(y_true, axis=(1, 2, 3)) + np.sum(y_pred, axis=(1, 2, 3)) + smooth))
def dice_coef(y_true, y_pred):
'''
DICE Loss.
:param y_true: a tensor of ground truth data
:param y_pred: a tensor of predicted data
'''
# Symbolically compute the intersection
intersection = K.sum(y_true * y_pred, axis=(1, 2, 3)) + 0.1
union = K.sum(y_true, axis=(1, 2, 3)) + K.sum(y_pred, axis=(1, 2, 3)) + 0.1
return K.mean(2 * intersection / union, axis=0)
# Technically this is the negative of the Sorensen-Dice index. This is done for minimization purposes
def dice_coef_loss(y_true, y_pred):
return 1 - dice_coef(y_true, y_pred)
def make_dice_loss_fnc(restrict_chn=1):
log.debug('Making DICE loss function for the first %d channels' % restrict_chn)
def dice_fnc(y_true, y_pred):
y_pred_new = y_pred[..., 0:restrict_chn] + 0.
intersection = K.sum(y_true * y_pred_new, axis=(1, 2, 3))
union = K.sum(y_true, axis=(1, 2, 3)) + K.sum(y_pred_new, axis=(1, 2, 3)) + 0.1
return 1 - K.mean(2 * (intersection + 0.1) / union, axis=0)
return dice_fnc
def kl(args):
mean, log_var = args
kl_loss = -0.5 * K.sum(1 + log_var - K.square(mean) - K.exp(log_var), axis=-1)
return K.reshape(kl_loss, (-1, 1))
def ypred(y_true, y_pred):
return y_pred