forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spaces-morphisms.tex
10262 lines (9060 loc) · 357 KB
/
spaces-morphisms.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Morphisms of Algebraic Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we introduce some types of morphisms of algebraic spaces.
A reference is \cite{Kn}.
\medskip\noindent
The goal is to extend the definition of each of the types of morphisms of
schemes defined in the chapters on schemes, and on morphisms of schemes
to the category of algebraic spaces. Each case is slightly different and
it seems best to treat them all separately.
\section{Conventions}
\label{section-conventions}
\noindent
The standing assumption is that all schemes are contained in
a big fppf site $\Sch_{fppf}$. And all rings $A$ considered
have the property that $\Spec(A)$ is (isomorphic) to an
object of this big site.
\medskip\noindent
Let $S$ be a scheme and let $X$ be an algebraic space over $S$.
In this chapter and the following we will write $X \times_S X$
for the product of $X$ with itself (in the category of algebraic
spaces over $S$), instead of $X \times X$.
\section{Properties of representable morphisms}
\label{section-representable}
\noindent
Let $S$ be a scheme.
Let $f : X \to Y$ be a representable morphism of algebraic spaces. In
Spaces, Section \ref{spaces-section-representable-properties}
we defined what it means for $f$ to
have property $\mathcal{P}$ in case $\mathcal{P}$ is a property
of morphisms of schemes which
\begin{enumerate}
\item is preserved under any base change,
see Schemes, Definition \ref{schemes-definition-preserved-by-base-change},
and
\item is fppf local on the base, see
Descent, Definition \ref{descent-definition-property-morphisms-local}.
\end{enumerate}
Namely, in this case we say $f$ has property $\mathcal{P}$ if and only
if for every scheme $U$ and any morphism $U \to Y$ the morphism of schemes
$X \times_Y U \to U$ has property $\mathcal{P}$.
\medskip\noindent
According to the lists in
Spaces, Section \ref{spaces-section-lists}
this applies to the following properties:
(1)(a) closed immersions,
(1)(b) open immersions,
(1)(c) quasi-compact immersions,
(2) quasi-compact,
(3) universally-closed,
(4) (quasi-)separated,
(5) monomorphism,
(6) surjective,
(7) universally injective,
(8) affine,
(9) quasi-affine,
(10) (locally) of finite type,
(11) (locally) quasi-finite,
(12) (locally) of finite presentation,
(13) locally of finite type of relative dimension $d$,
(14) universally open,
(15) flat,
(16) syntomic,
(17) smooth,
(18) unramified (resp.\ G-unramified),
(19) \'etale,
(20) proper,
(21) finite or integral,
(22) finite locally free,
(23) universally submersive,
(24) universal homeomorphism, and
(25) immersion.
\medskip\noindent
In this chapter we will redefine these notions for not necessarily
representable morphisms of algebraic spaces. Whenever we do this we will make
sure that the new definition agrees with the old one, in order to avoid
ambiguity.
\medskip\noindent
Note that the definition above applies whenever $X$ is a scheme,
since a morphism from a scheme to an algebraic space is representable.
And in particular it applies when both $X$ and $Y$ are schemes.
In
Spaces, Lemma
\ref{spaces-lemma-morphism-schemes-gives-representable-transformation-property}
we have seen that in this case the definitions
match, and no ambiguity arise.
\medskip\noindent
Furthermore, in
Spaces, Lemma
\ref{spaces-lemma-base-change-representable-transformations-property}
we have seen that the property of
representable morphisms of algebraic spaces so defined is stable under
arbitrary base change by a morphism of algebraic spaces.
And finally, in
Spaces, Lemmas
\ref{spaces-lemma-composition-representable-transformations-property} and
\ref{spaces-lemma-product-representable-transformations-property}
we have seen that if $\mathcal{P}$ is stable under compositions,
which holds for the properties
(1)(a), (1)(b), (1)(c), (2) -- (25), except (13) above, then
taking products of representable morphisms preserves property $\mathcal{P}$
and compositions of representable morphisms preserves property $\mathcal{P}$.
\medskip\noindent
We will use these facts below, and whenever we do we will simply refer
to this section as a reference.
\section{Separation axioms}
\label{section-separation-axioms}
\noindent
It makes sense to list some a priori properties of the diagonal of
a morphism of algebraic spaces.
\begin{lemma}
\label{lemma-properties-diagonal}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $\Delta_{X/Y} : X \to X \times_Y X$ be the diagonal morphism.
Then
\begin{enumerate}
\item $\Delta_{X/Y}$ is representable,
\item $\Delta_{X/Y}$ is locally of finite type,
\item $\Delta_{X/Y}$ is a monomorphism,
\item $\Delta_{X/Y}$ is separated, and
\item $\Delta_{X/Y}$ is locally quasi-finite.
\end{enumerate}
\end{lemma}
\begin{proof}
We are going to use the fact that $\Delta_{X/S}$ is
representable (by definition of an algebraic space) and that
it satisfies properties (2) -- (5), see
Spaces, Lemma \ref{spaces-lemma-properties-diagonal}.
Note that we have a factorization
$$
X
\longrightarrow
X \times_Y X
\longrightarrow
X \times_S X
$$
of the diagonal $\Delta_{X/S} : X \to X \times_S X$. Since
$X \times_Y X \to X \times_S X$ is a monomorphism, and since
$\Delta_{X/S}$ is representable, it follows formally that
$\Delta_{X/Y}$ is representable. In particular, the rest of
the statements now make sense, see
Section \ref{section-representable}.
\medskip\noindent
Choose a surjective \'etale morphism $U \to X$, with $U$ a scheme.
Consider the diagram
$$
\xymatrix{
R = U \times_X U \ar[r] \ar[d] &
U \times_Y U \ar[d] \ar[r] &
U \times_S U \ar[d] \\
X \ar[r] & X \times_Y X \ar[r] & X \times_S X
}
$$
Both squares are cartesian, hence so is the outer rectangle.
The top row consists of schemes, and the vertical arrows
are surjective \'etale morphisms. By
Spaces, Lemma \ref{spaces-lemma-representable-morphisms-spaces-property}
the properties (2) -- (5) for $\Delta_{X/Y}$ are equivalent to those of
$R \to U \times_Y U$. In the proof of
Spaces, Lemma \ref{spaces-lemma-properties-diagonal}
we have seen that $R \to U \times_S U$ has properties (2) -- (5).
The morphism $U \times_Y U \to U \times_S U$ is a monomorphism
of schemes. These facts imply that $R \to U \times_Y U$ have
properties (2) -- (5).
\medskip\noindent
Namely: For (3), note that $R \to U \times_Y U$
is a monomorphism as the composition
$R \to U \times_S U$ is a monomorphism. For (2), note that
$R \to U \times_Y U$ is locally of finite type, as the
composition $R \to U \times_S U$ is locally of finite type
(Morphisms, Lemma \ref{morphisms-lemma-permanence-finite-type}).
A monomorphism which is locally of finite type is locally quasi-finite
because it has finite fibres
(Morphisms, Lemma \ref{morphisms-lemma-finite-fibre}), hence (5).
A monomorphism is separated
(Schemes, Lemma \ref{schemes-lemma-monomorphism-separated}), hence (4).
\end{proof}
\begin{definition}
\label{definition-separated}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $\Delta_{X/Y} : X \to X \times_Y X$ be the diagonal morphism.
\begin{enumerate}
\item We say $f$ is {\it separated} if $\Delta_{X/Y}$ is a closed immersion.
\item We say $f$ is {\it locally separated}\footnote{In the literature
this term often refers to quasi-separated and locally separated morphisms.}
if $\Delta_{X/Y}$ is an immersion.
\item We say $f$ is {\it quasi-separated} if $\Delta_{X/Y}$ is quasi-compact.
\end{enumerate}
\end{definition}
\noindent
This definition makes sense since $\Delta_{X/Y}$ is representable,
and hence we know what it means for it to have one of the properties
described in the definition. We will see below
(Lemma \ref{lemma-match-separated}) that this definition matches the ones
we already have for morphisms of schemes and representable morphisms.
\begin{lemma}
\label{lemma-trivial-implications}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. If $f$ is separated, then $f$ is locally separated and
$f$ is quasi-separated.
\end{lemma}
\begin{proof}
This is true, via the general principle
Spaces,
Lemma \ref{spaces-lemma-representable-transformations-property-implication},
because a closed immersion of schemes is an immersion and is quasi-compact.
\end{proof}
\begin{lemma}
\label{lemma-base-change-separated}
All of the separation axioms listed in Definition \ref{definition-separated}
are stable under base change.
\end{lemma}
\begin{proof}
Let $f : X \to Y$ and $Y' \to Y$ be morphisms of algebraic spaces.
Let $f' : X' \to Y'$ be the base change of $f$ by $Y' \to Y$. Then
$\Delta_{X'/Y'}$ is the base change of $\Delta_{X/Y}$ by
the morphism $X' \times_{Y'} X' \to X \times_Y X$. By the results of
Section \ref{section-representable}
each of the properties of the diagonal used in
Definition \ref{definition-separated}
is stable under base change. Hence the lemma is true.
\end{proof}
\begin{lemma}
\label{lemma-fibre-product-after-map}
\begin{slogan}
The top arrow of a ``magic diagram'' of algebraic spaces has nice
immersion-like properties, and under separatedness hypotheses
these get stronger.
\end{slogan}
Let $S$ be a scheme. Let $f : X \to Z$, $g : Y \to Z$ and $Z \to T$
be morphisms of algebraic spaces over $S$. Consider the induced morphism
$i : X \times_Z Y \to X \times_T Y$. Then
\begin{enumerate}
\item $i$ is representable, locally of finite type, locally quasi-finite,
separated and a monomorphism,
\item if $Z \to T$ is locally separated, then $i$ is an immersion,
\item if $Z \to T$ is separated, then $i$ is a closed immersion, and
\item if $Z \to T$ is quasi-separated, then $i$ is quasi-compact.
\end{enumerate}
\end{lemma}
\begin{proof}
By general category theory the following diagram
$$
\xymatrix{
X \times_Z Y \ar[r]_i \ar[d] & X \times_T Y \ar[d] \\
Z \ar[r]^-{\Delta_{Z/T}} \ar[r] & Z \times_T Z
}
$$
is a fibre product diagram. Hence $i$ is the base change of the
diagonal morphism $\Delta_{Z/T}$. Thus the lemma follows
from Lemma \ref{lemma-properties-diagonal}, and the material in
Section \ref{section-representable}.
\end{proof}
\begin{lemma}
\label{lemma-semi-diagonal}
\begin{slogan}
Properties of the graph of a morphism of algebraic spaces
as a consequence of separation properties of the target.
\end{slogan}
Let $S$ be a scheme. Let $T$ be an algebraic space over $S$.
Let $g : X \to Y$ be a morphism of algebraic spaces over $T$.
Consider the graph $i : X \to X \times_T Y$ of $g$. Then
\begin{enumerate}
\item $i$ is representable, locally of finite type, locally quasi-finite,
separated and a monomorphism,
\item if $Y \to T$ is locally separated, then $i$ is an immersion,
\item if $Y \to T$ is separated, then $i$ is a closed immersion, and
\item if $Y \to T$ is quasi-separated, then $i$ is quasi-compact.
\end{enumerate}
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-fibre-product-after-map}
applied to the morphism $X = X \times_Y Y \to X \times_T Y$.
\end{proof}
\begin{lemma}
\label{lemma-section-immersion}
Let $S$ be a scheme.
Let $f : X \to T$ be a morphism of algebraic spaces over $S$.
Let $s : T \to X$ be a section of $f$ (in a formula
$f \circ s = \text{id}_T$). Then
\begin{enumerate}
\item $s$ is representable, locally of finite type, locally quasi-finite,
separated and a monomorphism,
\item if $f$ is locally separated, then $s$ is an immersion,
\item if $f$ is separated, then $s$ is a closed immersion, and
\item if $f$ is quasi-separated, then $s$ is quasi-compact.
\end{enumerate}
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-semi-diagonal} applied to
$g = s$ so the morphism $i = s : T \to T \times_T X$.
\end{proof}
\begin{lemma}
\label{lemma-composition-separated}
All of the separation axioms listed in Definition \ref{definition-separated}
are stable under composition of morphisms.
\end{lemma}
\begin{proof}
Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of algebraic spaces
to which the axiom in question applies.
The diagonal $\Delta_{X/Z}$ is the composition
$$
X \longrightarrow X \times_Y X \longrightarrow X \times_Z X.
$$
Our separation axiom is defined by requiring the diagonal
to have some property $\mathcal{P}$. By
Lemma \ref{lemma-fibre-product-after-map} above we see that
the second arrow also has this property. Hence the lemma follows
since the composition of (representable) morphisms with property
$\mathcal{P}$ also is a morphism with property $\mathcal{P}$, see
Section \ref{section-representable}.
\end{proof}
\begin{lemma}
\label{lemma-separated-over-separated}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
\begin{enumerate}
\item If $Y$ is separated and $f$ is separated, then $X$ is separated.
\item If $Y$ is quasi-separated and $f$ is quasi-separated, then
$X$ is quasi-separated.
\item If $Y$ is locally separated and $f$ is locally separated, then
$X$ is locally separated.
\item If $Y$ is separated over $S$ and $f$ is separated, then
$X$ is separated over $S$.
\item If $Y$ is quasi-separated over $S$ and $f$ is quasi-separated, then
$X$ is quasi-separated over $S$.
\item If $Y$ is locally separated over $S$ and $f$ is locally separated, then
$X$ is locally separated over $S$.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (4), (5), and (6) follow immediately from
Lemma \ref{lemma-composition-separated}
and
Spaces, Definition \ref{spaces-definition-separated}.
Parts (1), (2), and (3) reduce to parts (4), (5), and (6) by thinking
of $X$ and $Y$ as algebraic spaces over $\Spec(\mathbf{Z})$, see
Properties of Spaces, Definition \ref{spaces-properties-definition-separated}.
\end{proof}
\begin{lemma}
\label{lemma-compose-after-separated}
Let $S$ be a scheme.
Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of algebraic spaces over $S$.
\begin{enumerate}
\item If $g \circ f$ is separated then so is $f$.
\item If $g \circ f$ is locally separated then so is $f$.
\item If $g \circ f$ is quasi-separated then so is $f$.
\end{enumerate}
\end{lemma}
\begin{proof}
Consider the factorization
$$
X \to X \times_Y X \to X \times_Z X
$$
of the diagonal morphism of $g \circ f$. In any case the last morphism
is a monomorphism. Hence for any scheme $T$ and morphism
$T \to X \times_Y X$ we have the equality
$$
X \times_{(X \times_Y X)} T = X \times_{(X \times_Z X)} T.
$$
Hence the result is clear.
\end{proof}
\begin{lemma}
\label{lemma-separated-implies-morphism-separated}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
\begin{enumerate}
\item If $X$ is separated then $X$ is separated over $S$.
\item If $X$ is locally separated then $X$ is locally separated over $S$.
\item If $X$ is quasi-separated then $X$ is quasi-separated over $S$.
\end{enumerate}
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
\begin{enumerate}
\item[(4)] If $X$ is separated over $S$ then $f$ is separated.
\item[(5)] If $X$ is locally separated over $S$ then $f$ is locally separated.
\item[(6)] If $X$ is quasi-separated over $S$ then $f$ is quasi-separated.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (4), (5), and (6) follow immediately from
Lemma \ref{lemma-compose-after-separated}
and
Spaces, Definition \ref{spaces-definition-separated}.
Parts (1), (2), and (3) follow from parts (4), (5), and (6) by
thinking of $X$ and $Y$ as algebraic spaces over
$\Spec(\mathbf{Z})$, see
Properties of Spaces, Definition \ref{spaces-properties-definition-separated}.
\end{proof}
\begin{lemma}
\label{lemma-separated-local}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $\mathcal{P}$ be any of the separation
axioms of Definition \ref{definition-separated}.
The following are equivalent
\begin{enumerate}
\item $f$ is $\mathcal{P}$,
\item for every scheme $Z$ and morphism $Z \to Y$ the
base change $Z \times_Y X \to Z$ of $f$ is $\mathcal{P}$,
\item for every affine scheme $Z$ and every morphism $Z \to Y$ the
base change $Z \times_Y X \to Z$ of $f$ is $\mathcal{P}$,
\item for every affine scheme $Z$ and every morphism $Z \to Y$ the
algebraic space $Z \times_Y X$ is $\mathcal{P}$ (see
Properties of Spaces, Definition \ref{spaces-properties-definition-separated}),
\item there exists a scheme $V$ and a surjective \'etale morphism
$V \to Y$ such that the base change $V \times_Y X \to V$ has
$\mathcal{P}$, and
\item there exists a Zariski covering $Y = \bigcup Y_i$ such that each
of the morphisms $f^{-1}(Y_i) \to Y_i$ has $\mathcal{P}$.
\end{enumerate}
\end{lemma}
\begin{proof}
We will repeatedly use
Lemma \ref{lemma-base-change-separated}
without further mention. In particular, it is clear that
(1) implies (2) and (2) implies (3).
\medskip\noindent
Let us prove that (3) and (4) are equivalent. Note that if $Z$ is an affine
scheme, then the morphism $Z \to \Spec(\mathbf{Z})$ is a separated
morphism as a morphism of algebraic spaces over $\Spec(\mathbf{Z})$.
If $Z \times_Y X \to Z$ is $\mathcal{P}$, then
$Z \times_Y X \to \Spec(\mathbf{Z})$ is $\mathcal{P}$
as a composition (see
Lemma \ref{lemma-composition-separated}). Hence the algebraic
space $Z \times_Y X$ is $\mathcal{P}$. Conversely, if the algebraic
space $Z \times_Y X$ is $\mathcal{P}$, then
$Z \times_Y X \to \Spec(\mathbf{Z})$ is $\mathcal{P}$, and
hence by
Lemma \ref{lemma-compose-after-separated}
we see that $Z \times_Y X \to Z$ is $\mathcal{P}$.
\medskip\noindent
Let us prove that (3) implies (5). Assume (3). Let $V$ be a scheme
and let $V \to Y$ be \'etale surjective. We have to show that
$V \times_Y X \to V$ has property $\mathcal{P}$. In other words,
we have to show that the morphism
$$
V \times_Y X \longrightarrow
(V \times_Y X) \times_V (V \times_Y X) = V \times_Y X \times_Y X
$$
has the corresponding property (i.e., is a closed immersion, immersion,
or quasi-compact). Let $V = \bigcup V_j$ be an
affine open covering of $V$. By assumption we know that each of the morphisms
$$
V_j \times_Y X \longrightarrow V_j \times_Y X \times_Y X
$$
does have the corresponding property. Since being a closed immersion,
immersion, quasi-compact immersion, or quasi-compact is Zariski local
on the target, and since the $V_j$ cover $V$ we get the desired conclusion.
\medskip\noindent
Let us prove that (5) implies (1). Let $V \to Y$ be as in (5).
Then we have the fibre product diagram
$$
\xymatrix{
V \times_Y X \ar[r] \ar[d] &
X \ar[d] \\
V \times_Y X \times_Y X \ar[r] &
X \times_Y X
}
$$
By assumption the left vertical arrow is a closed immersion,
immersion, quasi-compact immersion, or quasi-compact. It follows from
Spaces, Lemma \ref{spaces-lemma-descent-representable-transformations-property}
that also the right vertical arrow is a closed immersion,
immersion, quasi-compact immersion, or quasi-compact.
\medskip\noindent
It is clear that (1) implies (6) by taking the covering $Y = Y$.
Assume $Y = \bigcup Y_i$ is as in (6). Choose schemes $V_i$ and
surjective \'etale morphisms $V_i \to Y_i$. Note that the morphisms
$V_i \times_Y X \to V_i$ have $\mathcal{P}$ as they are base changes
of the morphisms $f^{-1}(Y_i) \to Y_i$. Set $V = \coprod V_i$.
Then $V \to Y$ is a morphism as in (5) (details omitted). Hence
(6) implies (5) and we are done.
\end{proof}
\begin{lemma}
\label{lemma-match-separated}
Let $S$ be a scheme.
Let $f : X \to Y$ be a representable morphism of algebraic spaces over $S$.
\begin{enumerate}
\item The morphism $f$ is locally separated.
\item The morphism $f$ is (quasi-)separated in the sense of
Definition \ref{definition-separated}
above if and only if $f$ is (quasi-)separated in the sense of
Section \ref{section-representable}.
\end{enumerate}
In particular, if $f : X \to Y$ is a morphism of schemes over $S$, then
$f$ is (quasi-)separated in the sense of
Definition \ref{definition-separated}
if and only if $f$ is (quasi-)separated as a morphism of schemes.
\end{lemma}
\begin{proof}
This is the equivalence of (1) and (2) of
Lemma \ref{lemma-separated-local}
combined with the fact that any morphism of schemes is locally separated, see
Schemes, Lemma \ref{schemes-lemma-diagonal-immersion}.
\end{proof}
\section{Surjective morphisms}
\label{section-surjective}
\noindent
We have already defined in Section \ref{section-representable}
what it means for a representable morphism of algebraic spaces
to be surjective.
\begin{lemma}
\label{lemma-surjective-representable}
Let $S$ be a scheme. Let $f : X \to Y$ be a representable
morphism of algebraic spaces over $S$. Then
$f$ is surjective (in the sense of Section \ref{section-representable})
if and only if $|f| : |X| \to |Y|$ is surjective.
\end{lemma}
\begin{proof}
Namely, if $f : X \to Y$ is representable, then it is surjective if and only if
for every scheme $T$ and every morphism $T \to Y$ the base change
$f_T : T \times_Y X \to T$ of $f$ is a surjective morphism of schemes,
in other words, if and only if $|f_T|$ is surjective. By
Properties of Spaces, Lemma \ref{spaces-properties-lemma-points-cartesian}
the map $|T \times_Y X| \to |T| \times_{|Y|} |X|$ is always surjective.
Hence $|f_T| : |T \times_Y X| \to |T|$ is surjective if $|f| : |X| \to |Y|$
is surjective. Conversely, if $|f_T|$ is surjective
for every $T \to Y$ as above, then by taking $T$ to be the spectrum of a
field we conclude that $|X| \to |Y|$ is surjective.
\end{proof}
\noindent
This clears the way for the following definition.
\begin{definition}
\label{definition-surjective}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic
spaces over $S$. We say $f$ is {\it surjective}
if the map $|f| : |X| \to |Y|$ of associated topological spaces
is surjective.
\end{definition}
\begin{lemma}
\label{lemma-surjective-local}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
The following are equivalent:
\begin{enumerate}
\item $f$ is surjective,
\item for every scheme $Z$ and any morphism $Z \to Y$ the morphism
$Z \times_Y X \to Z$ is surjective,
\item for every affine scheme $Z$ and any morphism
$Z \to Y$ the morphism $Z \times_Y X \to Z$ is surjective,
\item there exists a scheme $V$ and a surjective \'etale morphism
$V \to Y$ such that $V \times_Y X \to V$ is a surjective morphism,
\item there exists a scheme $U$ and a surjective \'etale morphism
$\varphi : U \to X$ such that the composition $f \circ \varphi$
is surjective,
\item there exists a commutative diagram
$$
\xymatrix{
U \ar[d] \ar[r] & V \ar[d] \\
X \ar[r] & Y
}
$$
where $U$, $V$ are schemes and the vertical arrows are surjective \'etale
such that the top horizontal arrow is surjective, and
\item there exists a Zariski covering $Y = \bigcup Y_i$ such that
each of the morphisms $f^{-1}(Y_i) \to Y_i$ is surjective.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-composition-surjective}
The composition of surjective morphisms is surjective.
\end{lemma}
\begin{proof}
This is immediate from the definition.
\end{proof}
\begin{lemma}
\label{lemma-base-change-surjective}
The base change of a surjective morphism is surjective.
\end{lemma}
\begin{proof}
Follows immediately from
Properties of Spaces, Lemma \ref{spaces-properties-lemma-points-cartesian}.
\end{proof}
\section{Open morphisms}
\label{section-open}
\noindent
For a representable morphism of algebraic spaces we have already defined (in
Section \ref{section-representable})
what it means to be universally open. Hence before we give the natural
definition we check that it agrees with this in the representable case.
\begin{lemma}
\label{lemma-characterize-representable-universally-open}
Let $S$ be a scheme. Let $f : X \to Y$ be a representable morphism of
algebraic spaces over $S$. The following are equivalent
\begin{enumerate}
\item $f$ is universally open
(in the sense of Section \ref{section-representable}), and
\item for every morphism of algebraic spaces $Z \to Y$ the morphism of
topological spaces $|Z \times_Y X| \to |Z|$ is open.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (1), and let $Z \to Y$ be as in (2). Choose a scheme $V$ and
a surjective \'etale morphism $V \to Y$. By assumption the morphism
of schemes $V \times_Y X \to V$ is universally open. By
Properties of Spaces, Section \ref{spaces-properties-section-points}
in the commutative diagram
$$
\xymatrix{
|V \times_Y X| \ar[r] \ar[d] & |Z \times_Y X| \ar[d] \\
|V| \ar[r] & |Z|
}
$$
the horizontal arrows are open and surjective, and moreover
$$
|V \times_Y X| \longrightarrow |V| \times_{|Z|} |Z \times_Y X|
$$
is surjective. Hence as the left
vertical arrow is open it follows that the right vertical arrow is
open. This proves (2). The implication (2) $\Rightarrow$ (1) is
immediate from the definitions.
\end{proof}
\noindent
Thus we may use the following natural definition.
\begin{definition}
\label{definition-open}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$.
\begin{enumerate}
\item We say $f$ is {\it open} if the map of topological spaces
$|f| : |X| \to |Y|$ is open.
\item We say $f$ is {\it universally open} if for every morphism
of algebraic spaces $Z \to Y$ the morphism of topological spaces
$$
|Z \times_Y X| \to |Z|
$$
is open, i.e., the base change $Z \times_Y X \to Z$ is open.
\end{enumerate}
\end{definition}
\noindent
Note that an \'etale morphism of algebraic spaces is universally open,
see
Properties of Spaces, Definition \ref{spaces-properties-definition-etale} and
Lemmas \ref{spaces-properties-lemma-etale-open} and
\ref{spaces-properties-lemma-base-change-etale}.
\begin{lemma}
\label{lemma-base-change-universally-open}
The base change of a universally open morphism of algebraic spaces
by any morphism of algebraic spaces is universally open.
\end{lemma}
\begin{proof}
This is immediate from the definition.
\end{proof}
\begin{lemma}
\label{lemma-composition-open}
The composition of a pair of (universally) open morphisms of algebraic spaces
is (universally) open.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-universally-open-local}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. The following are equivalent
\begin{enumerate}
\item $f$ is universally open,
\item for every scheme $Z$ and every morphism $Z \to Y$
the projection $|Z \times_Y X| \to |Z|$ is open,
\item for every affine scheme $Z$ and every morphism $Z \to Y$
the projection $|Z \times_Y X| \to |Z|$ is open, and
\item there exists a scheme $V$ and a surjective \'etale morphism
$V \to Y$ such that $V \times_Y X \to V$ is a universally open morphism
of algebraic spaces, and
\item there exists a Zariski covering $Y = \bigcup Y_i$ such that
each of the morphisms $f^{-1}(Y_i) \to Y_i$ is universally open.
\end{enumerate}
\end{lemma}
\begin{proof}
We omit the proof that (1) implies (2), and that (2) implies (3).
\medskip\noindent
Assume (3). Choose a surjective \'etale morphism $V \to Y$.
We are going to show that $V \times_Y X \to V$ is a universally
open morphism of algebraic spaces. Let $Z \to V$ be a morphism
from an algebraic space to $V$. Let $W \to Z$ be a surjective \'etale
morphism where $W = \coprod W_i$ is a disjoint union of affine schemes, see
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-cover-by-union-affines}.
Then we have the following commutative diagram
$$
\xymatrix{
\coprod_i |W_i \times_Y X| \ar@{=}[r] \ar[d] &
|W \times_Y X| \ar[r] \ar[d] &
|Z \times_Y X| \ar[d] \ar@{=}[r] &
|Z \times_V (V \times_Y X)| \ar[ld] \\
\coprod |W_i| \ar@{=}[r] &
|W| \ar[r] &
|Z|
}
$$
We have to show the south-east arrow is open. The middle horizontal
arrows are surjective and open
(Properties of Spaces, Lemma \ref{spaces-properties-lemma-etale-open}).
By assumption (3), and the fact that
$W_i$ is affine we see that the left vertical arrows are open. Hence
it follows that the right vertical arrow is open.
\medskip\noindent
Assume $V \to Y$ is as in (4). We will show that $f$ is universally open.
Let $Z \to Y$ be a morphism of algebraic spaces. Consider the
diagram
$$
\xymatrix{
|(V \times_Y Z) \times_V (V \times_Y X)| \ar@{=}[r] \ar[rd] &
|V \times_Y X| \ar[r] \ar[d] &
|Z \times_Y X| \ar[d] \\
&
|V \times_Y Z| \ar[r] &
|Z|
}
$$
The south-west arrow is open by assumption. The horizontal arrows are
surjective and open because the corresponding morphisms of
algebraic spaces are \'etale (see
Properties of Spaces, Lemma \ref{spaces-properties-lemma-etale-open}).
It follows that the right vertical arrow is open.
\medskip\noindent
Of course (1) implies (5) by taking the covering $Y = Y$.
Assume $Y = \bigcup Y_i$ is as in (5). Then for any $Z \to Y$
we get a corresponding Zariski covering $Z = \bigcup Z_i$ such that
the base change of $f$ to $Z_i$ is open. By a simple topological
argument this implies that $Z \times_Y X \to Z$ is open. Hence (1) holds.
\end{proof}
\begin{lemma}
\label{lemma-space-over-field-universally-open}
Let $S$ be a scheme. Let $p : X \to \Spec(k)$ be a morphism of
algebraic spaces over $S$ where $k$ is a field. Then
$p : X \to \Spec(k)$ is universally open.
\end{lemma}
\begin{proof}
Choose a scheme $U$ and a surjective \'etale morphism $U \to X$.
The composition $U \to \Spec(k)$ is universally open (as a morphism
of schemes) by
Morphisms, Lemma \ref{morphisms-lemma-scheme-over-field-universally-open}.
Let $Z \to \Spec(k)$ be a morphism of schemes. Then
$U \times_{\Spec(k)} Z \to X \times_{\Spec(k)} Z$ is surjective,
see
Lemma \ref{lemma-base-change-surjective}.
Hence the first of the maps
$$
|U \times_{\Spec(k)} Z| \to |X \times_{\Spec(k)} Z| \to |Z|
$$
is surjective. Since the composition is open by the above we conclude that
the second map is open as well. Whence $p$ is universally open by
Lemma \ref{lemma-universally-open-local}.
\end{proof}
\section{Submersive morphisms}
\label{section-submersive}
\noindent
For a representable morphism of algebraic spaces we have already defined (in
Section \ref{section-representable})
what it means to be universally submersive. Hence before we give the natural
definition we check that it agrees with this in the representable case.
\begin{lemma}
\label{lemma-characterize-representable-universally-submersive}
Let $S$ be a scheme. Let $f : X \to Y$ be a representable morphism of
algebraic spaces over $S$. The following are equivalent
\begin{enumerate}
\item $f$ is universally submersive
(in the sense of Section \ref{section-representable}), and
\item for every morphism of algebraic spaces $Z \to Y$ the morphism of
topological spaces $|Z \times_Y X| \to |Z|$ is submersive.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (1), and let $Z \to Y$ be as in (2). Choose a scheme $V$ and
a surjective \'etale morphism $V \to Y$. By assumption the morphism
of schemes $V \times_Y X \to V$ is universally submersive. By
Properties of Spaces, Section \ref{spaces-properties-section-points}
in the commutative diagram
$$
\xymatrix{
|V \times_Y X| \ar[r] \ar[d] & |Z \times_Y X| \ar[d] \\
|V| \ar[r] & |Z|
}
$$
the horizontal arrows are open and surjective, and moreover
$$
|V \times_Y X| \longrightarrow |V| \times_{|Z|} |Z \times_Y X|
$$
is surjective. Hence as the left vertical arrow is submersive
it follows that the right vertical arrow is submersive.
This proves (2). The implication (2) $\Rightarrow$ (1) is
immediate from the definitions.
\end{proof}
\noindent
Thus we may use the following natural definition.
\begin{definition}
\label{definition-submersive}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
\begin{enumerate}
\item We say $f$ is {\it submersive}\footnote{This is very different
from the notion of a submersion of differential manifolds.}
if the continuous map $|X| \to |Y|$ is submersive, see
Topology, Definition \ref{topology-definition-submersive}.
\item We say $f$ is {\it universally submersive} if for every
morphism of algebraic spaces $Y' \to Y$ the base change
$Y' \times_Y X \to Y'$ is submersive.
\end{enumerate}
\end{definition}
\noindent
We note that a submersive morphism is in particular surjective.
\begin{lemma}
\label{lemma-base-change-universally-submersive}
The base change of a universally submersive morphism of algebraic spaces
by any morphism of algebraic spaces is universally submersive.
\end{lemma}
\begin{proof}
This is immediate from the definition.
\end{proof}
\begin{lemma}
\label{lemma-composition-universally-submersive}
The composition of a pair of (universally) submersive morphisms of
algebraic spaces is (universally) submersive.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Quasi-compact morphisms}
\label{section-quasi-compact}
\noindent
By Section \ref{section-representable} we know what it means for
a representable morphism of algebraic spaces to be quasi-compact.
In order to formulate the definition for a general morphism
of algebraic spaces we make the following observation.
\begin{lemma}
\label{lemma-characterize-representable-quasi-compact}
Let $S$ be a scheme.
Let $f : X \to Y$ be a representable morphism of algebraic spaces over $S$.
The following are equivalent:
\begin{enumerate}