forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
groupoids-quotients.tex
1328 lines (1162 loc) · 47.2 KB
/
groupoids-quotients.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Quotients of Groupoids}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter is devoted to generalities concerning groupoids and their
quotients (as far as they exist).
There is a lot of literature on this subject, see for example
\cite{GIT}, \cite{seshadri_quotients}, \cite{KollarQuotients},
\cite{K-M}, \cite{KollarFinite} and many more.
\section{Conventions and notation}
\label{section-conventions-notation}
\noindent
In this chapter the conventions and notation are those introduced in
Groupoids in Spaces, Sections \ref{spaces-groupoids-section-conventions}
and \ref{spaces-groupoids-section-notation}.
\section{Invariant morphisms}
\label{section-invariant}
\begin{definition}
\label{definition-invariant}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j = (t, s) : R \to U \times_B U$ be a pre-relation of algebraic
spaces over $B$. We say a morphism $\phi : U \to X$ of algebraic spaces
over $B$ is {\it $R$-invariant} if the diagram
$$
\xymatrix{
R \ar[r]_s \ar[d]_t & U \ar[d]^\phi \\
U \ar[r]^\phi & X
}
$$
is commutative. If $j : R \to U \times_B U$ comes from the action
of a group algebraic space $G$ on $U$ over $B$ as in
Groupoids in Spaces, Lemma \ref{spaces-groupoids-lemma-groupoid-from-action},
then we say that $\phi$ is {\it $G$-invariant}.
\end{definition}
\noindent
In other words, a morphism $U \to X$ is $R$-invariant if it equalizes
$s$ and $t$. We can reformulate this in terms of associated quotient
sheaves as follows.
\begin{lemma}
\label{lemma-invariant}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j = (t, s) : R \to U \times_B U$ be a pre-relation of algebraic
spaces over $B$. A morphism of algebraic spaces $\phi : U \to X$ is
$R$-invariant if and only if it factors as
$U \to U/R \to X$.
\end{lemma}
\begin{proof}
This is clear from the definition of the quotient sheaf in
Groupoids in Spaces, Section \ref{spaces-groupoids-section-quotient-sheaves}.
\end{proof}
\begin{lemma}
\label{lemma-pullback-invariant}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j = (t, s) : R \to U \times_B U$ be a pre-relation of algebraic
spaces over $B$. Let $U \to X$ be an $R$-invariant morphism of algebraic
spaces over $B$. Let $X' \to X$ be any morphism of algebraic spaces.
\begin{enumerate}
\item Setting $U' = X' \times_X U$, $R' = X' \times_X R$ we obtain
a pre-relation $j' : R' \to U' \times_B U'$.
\item The pre-relation $j' : R' \to U' \times_B U'$ is the restriction of
$j : R \to U \times_B U$ via $U' \to U$, see
Groupoids in Spaces, Definition
\ref{spaces-groupoids-definition-restrict-relation}.
\item If $j$ is a relation, then $j'$ is a relation.
\item If $j$ is a pre-equivalence relation, then
$j'$ is a pre-equivalence relation.
\item If $j$ is an equivalence relation, then $j'$ is an equivalence
relation.
\item If $j$ comes from a groupoid in algebraic spaces
$(U, R, s, t, c)$ over $B$, then $j'$ comes from the restriction
of this groupoid to $U'$, see
Groupoids in Spaces, Definition
\ref{spaces-groupoids-definition-restrict-groupoid}.
\item If $j$ comes from the action of a group algebraic space $G/B$ on $U$
as in
Groupoids in Spaces, Lemma
\ref{spaces-groupoids-lemma-groupoid-from-action}
then $j'$ comes from the induced action of $G$ on $U'$.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted. Hint: Functorial point of view combined with the picture:
$$
\xymatrix{
R' = X' \times_X R \ar[dd] \ar[rr] \ar[rd] & &
X' \times_X U = U' \ar'[d][dd] \ar[rd] \\
& R \ar[dd] \ar[rr] & & U \ar[dd] \\
U' = X' \times_X U \ar'[r][rr] \ar[rd] & & X' \ar[rd] \\
& U \ar[rr] & & X
}
$$
\end{proof}
\begin{definition}
\label{definition-pullback}
In the situation of
Lemma \ref{lemma-pullback-invariant}
we call $j' : R' \to U' \times_B U'$ the {\it pullback} of the pre-relation
$j$ to $X'$. We say it is a {\it flat pullback} if $X' \to X$ is a flat
morphism of algebraic spaces.
\end{definition}
\section{Categorical quotients}
\label{section-categorical}
\noindent
This is the most basic kind of quotient one can consider.
\begin{definition}
\label{definition-categorical}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j = (t, s) : R \to U \times_B U$ be pre-relation in algebraic spaces
over $B$.
\begin{enumerate}
\item We say a morphism $\phi : U \to X$ of algebraic spaces over $B$
is a {\it categorical quotient} if it is $R$-invariant, and
for every $R$-invariant morphism $\psi : U \to Y$ of algebraic spaces over $B$
there exists a unique morphism $\chi : X \to Y$ such that
$\psi = \phi \circ \chi$.
\item Let $\mathcal{C}$ be a full subcategory of the category of algebraic
spaces over $B$. Assume $U$, $R$ are objects of $\mathcal{C}$.
In this situation we say
a morphism $\phi : U \to X$ of algebraic spaces over $B$
is a {\it categorical quotient in $\mathcal{C}$}
if $X \in \Ob(\mathcal{C})$, and $\phi$ is $R$-invariant,
and for every $R$-invariant morphism
$\psi : U \to Y$ with $Y \in \Ob(\mathcal{C})$
there exists a unique morphism $\chi : X \to Y$ such
that $\psi = \phi \circ \chi$.
\item If $B = S$ and $\mathcal{C}$ is the category of schemes over $S$,
then we say $U \to X$ is a
{\it categorical quotient in the category of schemes}, or simply a
{\it categorical quotient in schemes}.
\end{enumerate}
\end{definition}
\noindent
We often single out a category $\mathcal{C}$ of algebraic spaces over $B$
by some separation axiom, see
Example \ref{example-categories}
for some standard cases.
Note that if $\phi : U \to X$ is a categorical quotient if and only
if $U \to X$ is a coequalizer for the
morphisms $t, s : R \to U$ in the category. Hence we immediately
deduce the following lemma.
\begin{lemma}
\label{lemma-categorical-unique}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j : R \to U \times_B U$ be a pre-relation in algebraic spaces over $B$.
If a categorical quotient in the category of algebraic spaces
over $B$ exists, then it is unique up to unique isomorphism.
Similarly for categorical quotients in full subcategories of
$\textit{Spaces}/B$.
\end{lemma}
\begin{proof}
See Categories, Section \ref{categories-section-coequalizers}.
\end{proof}
\begin{example}
\label{example-categories}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Here are some standard examples of categories $\mathcal{C}$
that we often come up when applying
Definition \ref{definition-categorical}:
\begin{enumerate}
\item $\mathcal{C}$ is the category of all algebraic spaces over $B$,
\item $B$ is separated and $\mathcal{C}$ is the category of all separated
algebraic spaces over $B$,
\item $B$ is quasi-separated and $\mathcal{C}$ is the category of all
quasi-separated algebraic spaces over $B$,
\item $B$ is locally separated and $\mathcal{C}$ is the category of all
locally separated algebraic spaces over $B$,
\item $B$ is decent and $\mathcal{C}$ is the category of all decent algebraic
spaces over $B$, and
\item $S = B$ and $\mathcal{C}$ is the category of schemes over $S$.
\end{enumerate}
In this case, if $\phi : U \to X$ is a categorical quotient then we say
$U \to X$ is
(1) a {\it categorical quotient},
(2) a {\it categorical quotient in separated algebraic spaces},
(3) a {\it categorical quotient in quasi-separated algebraic spaces},
(4) a {\it categorical quotient in locally separated algebraic spaces},
(5) a {\it categorical quotient in decent algebraic spaces},
(6) a {\it categorical quotient in schemes}.
\end{example}
\begin{definition}
\label{definition-universal-categorical}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $\mathcal{C}$ be a full subcategory of the category of algebraic
spaces over $B$ closed under fibre products.
Let $j = (t, s) : R \to U \times_B U$ be pre-relation in
$\mathcal{C}$, and let $U \to X$ be an $R$-invariant morphism with
$X \in \Ob(\mathcal{C})$.
\begin{enumerate}
\item We say $U \to X$ is a {\it universal categorical quotient}
in $\mathcal{C}$ if for every morphism $X' \to X$ in $\mathcal{C}$
the morphism $U' = X' \times_X U \to X'$ is the categorical quotient in
$\mathcal{C}$ of the pullback $j' : R' \to U'$ of $j$.
\item We say $U \to X$ is a {\it uniform categorical quotient}
in $\mathcal{C}$ if for every flat morphism $X' \to X$ in $\mathcal{C}$
the morphism $U' = X' \times_X U \to X'$ is the categorical quotient in
$\mathcal{C}$ of the pullback $j' : R' \to U'$ of $j$.
\end{enumerate}
\end{definition}
\begin{lemma}
\label{lemma-categorical-reduced}
In the situation of
Definition \ref{definition-categorical}.
If $\phi : U \to X$ is a categorical quotient and $U$ is reduced,
then $X$ is reduced. The same holds for categorical quotients in
a category of spaces $\mathcal{C}$ listed in
Example \ref{example-categories}.
\end{lemma}
\begin{proof}
Let $X_{red}$ be the reduction of the algebraic space $X$.
Since $U$ is reduced the morphism $\phi : U \to X$ factors through
$i : X_{red} \to X$ (insert future reference here). Denote this morphism
by $\phi_{red} : U \to X_{red}$. Since $\phi \circ s = \phi \circ t$ we
see that also $\phi_{red} \circ s = \phi_{red} \circ t$ (as
$i : X_{red} \to X$ is a monomorphism). Hence by the universal property
of $\phi$ there exists a morphism $\chi : X \to X_{red}$ such that
$\phi_{red} = \phi \circ \chi$. By uniqueness we see that
$i \circ \chi = \text{id}_X$ and $\chi \circ i = \text{id}_{X_{red}}$.
Hence $i$ is an isomorphism and $X$ is reduced.
\medskip\noindent
To show that this argument works in a category $\mathcal{C}$ one
just needs to show that the reduction of an object of $\mathcal{C}$
is an object of $\mathcal{C}$. We omit the verification that this
holds for each of the standard examples.
\end{proof}
\section{Quotients as orbit spaces}
\label{section-orbits}
\noindent
Let $j = (t, s) : R \to U \times_B U$ be a pre-relation.
If $j$ is a pre-equivalence relation, then loosely speaking
the ``orbits'' of $R$ on $U$
are the subsets $t(s^{-1}(\{u\}))$ of $U$. However, if $j$ is just a
pre-relation, then we need to take the equivalence relation generated
by $R$.
\begin{definition}
\label{definition-orbit}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j : R \to U \times_B U$ be a pre-relation over $B$.
If $u \in |U|$, then the {\it orbit}, or more precisely the
{\it $R$-orbit} of $u$ is
$$
O_u =
\left\{
u' \in |U|\ :
\begin{matrix}
\exists n \geq 1, \ \exists u_0, \ldots, u_n \in |U|\text{ such that} \\
\text{for all }i \in \{0, \ldots, n - 1\}\text{ either } \\
u_i = u_{i + 1}\text{ or } \\
\exists r \in |R|, \ s(r) = u_i, t(r) = u_{i + 1}
\text{ or } \\
\exists r \in |R|, \ t(r) = u_i, s(r) = u_{i + 1}
\end{matrix}
\right\}
$$
\end{definition}
\noindent
It is clear that these are the equivalence classes of an equivalence relation,
i.e., we have $u' \in O_u$ if and only if $u \in O_{u'}$. The following lemma
is a reformulation of
Groupoids in Spaces,
Lemma \ref{spaces-groupoids-lemma-pre-equivalence-equivalence-relation-points}.
\begin{lemma}
\label{lemma-pre-equivalence-equivalence-relation-points}
Let $B \to S$ as in Section \ref{section-conventions-notation}.
Let $j : R \to U \times_B U$ be a pre-equivalence relation
of algebraic spaces over $B$. Then
$$
O_u =
\{u' \in |U| \text{ such that } \exists r \in |R|, \ s(r) = u, \ t(r) = u'\}.
$$
\end{lemma}
\begin{proof}
By the aforementioned
Groupoids in Spaces,
Lemma \ref{spaces-groupoids-lemma-pre-equivalence-equivalence-relation-points}
we see that the orbits $O_u$ as defined in the lemma give a disjoint
union decomposition of $|U|$. Thus we see they are equal to the
orbits as defined in Definition \ref{definition-orbit}.
\end{proof}
\begin{lemma}
\label{lemma-invariant-map-constant-on-orbit}
In the situation of Definition \ref{definition-orbit}.
Let $\phi : U \to X$ be an $R$-invariant morphism of algebraic spaces over
$B$. Then $|\phi| : |U| \to |X|$ is constant on the orbits.
\end{lemma}
\begin{proof}
To see this we just have to show that $\phi(u) = \phi(u')$
for all $u, u' \in |U|$ such that
there exists an $r \in |R|$ such that $s(r) = u$ and $t(r) = u'$.
And this is clear since $\phi$ equalizes $s$ and $t$.
\end{proof}
\noindent
There are several problems with considering the orbits $O_u \subset |U|$
as a tool for singling out properties of quotient maps. One issue is the
following. Suppose that $\Spec(k) \to B$
is a geometric point of $B$. Consider the canonical map
$$
U(k) \longrightarrow |U|.
$$
Then it is usually not the case that the equivalence classes
of the equivalence relation generated by $j(R(k)) \subset U(k) \times U(k)$
are the inverse images of the orbits $O_u \subset |U|$.
A silly example is to take $S = B = \Spec(\mathbf{Z})$,
$U = R = \Spec(k)$ with $s = t = \text{id}_k$. Then $|U| = |R|$ is
a single point but $U(k)/R(k)$ is enormous.
A more interesting example is to take $S = B = \Spec(\mathbf{Q})$,
choose some of number fields $K \subset L$, and set $U = \Spec(L)$
and $R = \Spec(L \otimes_K L)$ with obvious maps $s, t : R \to U$.
In this case $|U|$ still has just one point, but the quotient
$$
U(k)/R(k) = \Hom(K, k)
$$
consists of more than one element. We conclude from both examples
that if $U \to X$ is an $R$-invariant map and if we want it to
``separate orbits'' we get a much stronger and interesting notion by
considering the induced maps $U(k) \to X(k)$ and ask that
those maps separate orbits.
\medskip\noindent
There is an issue with this too. Namely, suppose that
$S = B = \Spec(\mathbf{R})$,
$U = \Spec(\mathbf{C})$, and
$R = \Spec(\mathbf{C}) \amalg \Spec(K)$
for some field extension $\sigma : \mathbf{C} \to K$.
Let the maps $s, t$ be given by the identity on the component
$\Spec(\mathbf{C})$, but by $\sigma, \sigma \circ \tau$ on the
second component where $\tau$ is complex conjugation. If
$K$ is a nontrivial extension of $\mathbf{C}$, then the two points
$1, \tau \in U(\mathbf{C})$ are not equivalent under
$j(R(\mathbf{C}))$. But after choosing an extension $\mathbf{C} \subset \Omega$
of sufficiently large cardinality (for example larger than the cardinality
of $K$) then the images of $1, \tau \in U(\mathbf{C})$ in
$U(\Omega)$ do become equivalent! It seems intuitively clear that
this happens either because $s, t : R \to U$ are not locally of finite type
or because the cardinality of the field $k$ is not large enough.
\medskip\noindent
Keeping this in mind we make the following definition.
\begin{definition}
\label{definition-geometric-orbits}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j : R \to U \times_B U$ be a pre-relation over $B$.
Let $\Spec(k) \to B$ be a geometric point of $B$.
\begin{enumerate}
\item We say $\overline{u}, \overline{u}' \in U(k)$ are
{\it weakly $R$-equivalent} if they are in the same equivalence class
for the equivalence relation generated by the relation
$j(R(k)) \subset U(k) \times U(k)$.
\item We say $\overline{u}, \overline{u}' \in U(k)$ are
{\it $R$-equivalent} if for some overfield $k \subset \Omega$
the images in $U(\Omega)$ are weakly $R$-equivalent.
\item The {\it weak orbit}, or more precisely the {\it weak $R$-orbit}
of $\overline{u} \in U(k)$ is set of all
elements of $U(k)$ which are weakly $R$-equivalent to $\overline{u}$.
\item The {\it orbit}, or more precisely the {\it $R$-orbit}
of $\overline{u} \in U(k)$ is set of all
elements of $U(k)$ which are $R$-equivalent to $\overline{u}$.
\end{enumerate}
\end{definition}
\noindent
It turns out that in good cases orbits and weak orbits agree, see
Lemma \ref{lemma-geometric-orbits}. The following lemma illustrates
the difference in the special case of a pre-equivalence relation.
\begin{lemma}
\label{lemma-weak-orbit-pre-equivalence}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $\Spec(k) \to B$ be a geometric point of $B$.
Let $j : R \to U \times_B U$ be a pre-equivalence relation over $B$.
In this case the weak orbit of $\overline{u} \in U(k)$ is simply
$$
\{
\overline{u}' \in U(k)
\text{ such that }
\exists \overline{r} \in R(k),
\ s(\overline{r}) = \overline{u},
\ t(\overline{r}) = \overline{u}'
\}
$$
and the orbit of $\overline{u} \in U(k)$ is
$$
\{
\overline{u}' \in U(k) :
\exists\text{ field extension }k \subset K, \ \exists\ r \in R(K),
\ s(r) = \overline{u}, \ t(r) = \overline{u}'\}
$$
\end{lemma}
\begin{proof}
This is true because by definition of a pre-equivalence relation the image
$j(R(k)) \subset U(k) \times U(k)$ is an equivalence relation.
\end{proof}
\noindent
Let us describe the recipe for turning any pre-relation into a
pre-equivalence relation. We will use the morphisms
\begin{equation}
\label{equation-list}
\begin{matrix}
j_{diag} &
: &
U &
\longrightarrow &
U \times_B U, &
u &
\longmapsto &
(u, u) \\
j_{flip} &
: &
R &
\longrightarrow &
U \times_B U, &
r &
\longmapsto &
(s(r), t(r)) \\
j_{comp} &
: &
R \times_{s, U, t} R &
\longrightarrow &
U \times_B U, &
(r, r') &
\longmapsto &
(t(r), s(r'))
\end{matrix}
\end{equation}
We define $j_1 = (t_1, s_1) : R_1 \to U \times_B U$ to be the morphism
$$
j \amalg j_{diag} \amalg j_{flip} :
R \amalg U \amalg R
\longrightarrow
U \times_B U
$$
with notation as in
Equation (\ref{equation-list}).
For $n > 1$ we set
$$
j_n = (t_n, s_n) :
R_n = R_1 \times_{s_1, U, t_{n - 1}} R_{n - 1} \longrightarrow U \times_B U
$$
where $t_n$ comes from $t_1$ precomposed with projection onto $R_1$ and
$s_n$ comes from $s_{n - 1}$ precomposed with projection onto $R_{n - 1}$.
Finally, we denote
$$
j_\infty = (t_\infty, s_\infty) :
R_\infty = \coprod\nolimits_{n \geq 1} R_n
\longrightarrow
U \times_B U.
$$
\begin{lemma}
\label{lemma-make-pre-equivalence}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j : R \to U \times_B U$ be a pre-relation over $B$.
Then $j_\infty : R_\infty \to U \times_B U$ is a
pre-equivalence relation over $B$. Moreover
\begin{enumerate}
\item $\phi : U \to X$ is $R$-invariant if and only if it is
$R_\infty$-invariant,
\item the canonical map of quotient sheaves $U/R \to U/R_\infty$ (see
Groupoids in Spaces, Section \ref{spaces-groupoids-section-quotient-sheaves})
is an isomorphism,
\item weak $R$-orbits agree with weak $R_\infty$-orbits,
\item $R$-orbits agree with $R_\infty$-orbits,
\item if $s, t$ are locally of finite type, then $s_\infty$, $t_\infty$
are locally of finite type,
\item add more here as needed.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted. Hint for (5): Any property of $s, t$ which is stable under composition
and stable under base change, and Zariski local on the source
will be inherited by $s_\infty, t_\infty$.
\end{proof}
\begin{lemma}
\label{lemma-geometric-orbits}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j : R \to U \times_B U$ be a pre-relation over $B$.
Let $\Spec(k) \to B$ be a geometric point of $B$.
\begin{enumerate}
\item If $s, t : R \to U$ are locally of finite type
then weak $R$-equivalence on $U(k)$ agrees with $R$-equivalence, and
weak $R$-orbits agree with $R$-orbits on $U(k)$.
\item If $k$ has sufficiently large cardinality then weak $R$-equivalence
on $U(k)$ agrees with $R$-equivalence, and weak $R$-orbits agree
with $R$-orbits on $U(k)$.
\end{enumerate}
\end{lemma}
\begin{proof}
We first prove (1). Assume $s, t$ locally of finite type. By
Lemma \ref{lemma-make-pre-equivalence}
we may assume that $R$ is a pre-equivalence relation.
Let $k$ be an algebraically closed field over $B$.
Suppose $\overline{u}, \overline{u}' \in U(k)$ are $R$-equivalent.
Then for some extension field $k \subset \Omega$ there exists
a point $\overline{r} \in R(\Omega)$ mapping to
$(\overline{u}, \overline{u}') \in (U \times_B U)(\Omega)$, see
Lemma \ref{lemma-weak-orbit-pre-equivalence}.
Hence
$$
Z = R \times_{j, U \times_B U, (\overline{u}, \overline{u}')} \Spec(k)
$$
is nonempty. As $s$ is locally of finite type we see that
also $j$ is locally of finite type, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-permanence-finite-type}.
This implies $Z$ is a nonempty algebraic space locally of finite type
over the algebraically closed field $k$ (use
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-finite-type}).
Thus $Z$ has a $k$-valued point, see
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-locally-finite-type-surjective-geometric-points}.
Hence we conclude there exists a $\overline{r} \in R(k)$ with
$j(\overline{r}) = (\overline{u}, \overline{u}')$, and we conclude that
$\overline{u}, \overline{u}'$ are $R$-equivalent as desired.
\medskip\noindent
The proof of part (2) is the same, except that it uses
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-large-enough}
instead of
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-locally-finite-type-surjective-geometric-points}.
This shows that the assertion holds as soon as $|k| > \lambda(R)$ with
$\lambda(R)$ as introduced just above
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-locally-finite-type-surjective-geometric-points}.
\end{proof}
\noindent
In the following definition we use the terminology ``$k$ is a field
over $B$'' to mean that $\Spec(k)$ comes equipped with a morphism
$\Spec(k) \to B$.
\begin{definition}
\label{definition-set-theoretically-invariant}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j : R \to U \times_B U$ be a pre-relation over $B$.
\begin{enumerate}
\item We say $\phi : U \to X$ is {\it set-theoretically $R$-invariant}
if and only if the map $U(k) \to X(k)$ equalizes the two maps
$s, t : R(k) \to U(k)$ for every algebraically closed field $k$
over $B$.
\item We say $\phi : U \to X$ {\it separates orbits}, or
{\it separates $R$-orbits} if it is set-theoretically $R$-invariant and
$\phi(\overline{u}) = \phi(\overline{u}')$ in $X(k)$ implies that
$\overline{u}, \overline{u}' \in U(k)$ are in the same orbit
for every algebraically closed field $k$ over $B$.
\end{enumerate}
\end{definition}
\noindent
In
Example \ref{example-not-invariant}
we show that being set-theoretically invariant is ``too weak'' a notion in
the category of algebraic spaces. A more geometric reformulation
of what it means to be set-theoretically invariant or to separate orbits is in
Lemma \ref{lemma-separates-orbits}.
\begin{lemma}
\label{lemma-set-theoretic-invariant}
In the situation of Definition \ref{definition-set-theoretically-invariant}.
A morphism $\phi : U \to X$ is set-theoretically $R$-invariant if and
only if for any algebraically closed field $k$ over $B$ the map
$U(k) \to X(k)$ is constant on orbits.
\end{lemma}
\begin{proof}
This is true because the condition is supposed to hold for all algebraically
closed fields over $B$.
\end{proof}
\begin{lemma}
\label{lemma-invariant-set-theoretically-invariant}
In the situation of Definition \ref{definition-set-theoretically-invariant}.
An invariant morphism is set-theoretically invariant.
\end{lemma}
\begin{proof}
This is immediate from the definitions.
\end{proof}
\begin{lemma}
\label{lemma-set-theoretically-invariant-invariant-when-reduced}
In the situation of Definition \ref{definition-set-theoretically-invariant}.
Let $\phi : U \to X$ be a morphism of algebraic spaces over $B$.
Assume
\begin{enumerate}
\item $\phi$ is set-theoretically $R$-invariant,
\item $R$ is reduced, and
\item $X$ is locally separated over $B$.
\end{enumerate}
Then $\phi$ is $R$-invariant.
\end{lemma}
\begin{proof}
Consider the equalizer
$$
Z = R \times_{(\phi, \phi) \circ j, X \times_B X, \Delta_{X/B}} X
$$
algebraic space. Then $Z \to R$ is an immersion by assumption (3).
By assumption (1) $|Z| \to |R|$ is surjective. This implies that
$Z \to R$ is a bijective closed immersion (use
Schemes, Lemma \ref{schemes-lemma-immersion-when-closed})
and by assumption (2) we conclude that $Z = R$.
\end{proof}
\begin{example}
\label{example-not-invariant}
There exist reduced quasi-separated algebraic spaces $X$, $Y$ and a pair of
morphisms $a, b : Y \to X$ which agree on all $k$-valued points but are not
equal. To get an example take $Y = \Spec(k[[x]])$ and
$$
X = \mathbf{A}^1_k \Big/ \big(\Delta \amalg \{(x, -x) \mid x \not = 0\}\big)
$$
the algebraic space of
Spaces, Example \ref{spaces-example-affine-line-involution}.
The two morphisms $a, b : Y \to X$
come from the two maps $x \mapsto x$ and $x \mapsto -x$
from $Y$ to $\mathbf{A}^1_k = \Spec(k[x])$. On the generic point
the two maps are the same because on the open part $x \not = 0$ of the
space $X$ the functions $x$ and $-x$ are equal. On the closed point
the maps are obviously the same. It is also true that $a \not = b$.
This implies that
Lemma \ref{lemma-set-theoretically-invariant-invariant-when-reduced}
does not hold with assumption (3) replaced by the assumption that $X$
be quasi-separated. Namely, consider the diagram
$$
\xymatrix{
Y \ar[d]_{-1} \ar[r]_1 & Y \ar[d]^a \\
Y \ar[r]^a & X
}
$$
then the composition $a \circ (-1) = b$. Hence we can set $R = Y$,
$U = Y$, $s = 1$, $t = -1$, $\phi = a$ to get an example of a set-theoretically
invariant morphism which is not invariant.
\end{example}
\noindent
The example above is instructive because the map $Y \to X$ even separates
orbits. It shows that in the category of algebraic spaces there are simply
too many set-theoretically invariant morphisms lying around. Next, let us
define what it means for $R$ to be a set-theoretic equivalence relation, while
remembering that we need to allow for field extensions to make this work
correctly.
\begin{definition}
\label{definition-set-theoretic-equivalence}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j : R \to U \times_B U$ be a pre-relation over $B$.
\begin{enumerate}
\item We say $j$ is a {\it set-theoretic pre-equivalence relation} if
$$
\overline{u} \sim_R \overline{u}'
\Leftrightarrow
\begin{matrix}
\exists\text{ field extension }k \subset K, \ \exists\ r \in R(K), \\
s(r) = \overline{u}, \ t(r) = \overline{u}'
\end{matrix}
$$
defines an equivalence relation on $U(k)$ for all algebraically closed fields
$k$ over $B$.
\item We say $j$ is a {\it set-theoretic equivalence relation}
if $j$ is universally injective and a set-theoretic pre-equivalence
relation.
\end{enumerate}
\end{definition}
\noindent
Let us reformulate this in more geometric terms.
\begin{lemma}
\label{lemma-set-theoretic-pre-equivalence-geometric}
In the situation of Definition \ref{definition-set-theoretic-equivalence}.
The following are equivalent:
\begin{enumerate}
\item The morphism $j$ is a set-theoretic pre-equivalence relation.
\item The subset $j(|R|) \subset |U \times_B U|$ contains the image of
$|j'|$ for any of the morphisms $j'$ as in Equation (\ref{equation-list}).
\item For every algebraically closed field $k$ over $B$ of sufficiently large
cardinality the subset $j(R(k)) \subset U(k) \times U(k)$ is an equivalence
relation.
\end{enumerate}
If $s, t$ are locally of finite type these are also equivalent to
\begin{enumerate}
\item[(4)] For every algebraically closed field $k$ over $B$
the subset $j(R(k)) \subset U(k) \times U(k)$ is an equivalence relation.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (2). Let $k$ be an algebraically closed field over $B$.
We are going to show that $\sim_R$ is an equivalence relation.
Suppose that $\overline{u}_i : \Spec(k) \to U$, $i = 1, 2$
are $k$-valued points of $U$. Suppose that $(\overline{u}_1, \overline{u}_2)$
is the image of a $K$-valued point $r \in R(K)$. Consider the
solid commutative diagram
$$
\xymatrix{
\Spec(K') \ar@{..>}[r] \ar@{..>}[d]
&
\Spec(k) \ar[d]_{(\overline{u}_2, \overline{u}_1)} &
\Spec(K) \ar[d] \ar[l] \\
R \ar[r]^-j &
U \times_B U &
R \ar[l]_-{j_{flip}}
}
$$
We also denote $r \in |R|$ the image of $r$.
By assumption the image of $|j_{flip}|$ is contained in the image of
$|j|$, in other words there exists a $r' \in |R|$ such that
$|j|(r') = |j_{flip}|(r)$. But note that $(\overline{u}_2, \overline{u}_1)$
is in the equivalence class that defines $|j|(r')$ (by the commutativity
of the solid part of the diagram). This means there exists a field
extension $k \subset K'$ and a morphism $r' : \Spec(K) \to R$
(abusively denoted $r'$ as well) with
$j \circ r' = (\overline{u}_2, \overline{u}_1) \circ i$
where $i : \Spec(K') \to \Spec(K)$ is the obvious map.
In other words the dotted part of the diagram commutes.
This proves that $\sim_R$ is a symmetric relation on $U(k)$.
In the similar way, using that the image of $|j_{diag}|$ is contained
in the image of $|j|$ we see that $\sim_R$ is reflexive (details omitted).
\medskip\noindent
To show that $\sim_R$ is transitive assume given
$\overline{u}_i : \Spec(k) \to U$, $i = 1, 2, 3$
and field extensions $k \subset K_i$ and points
$r_i : \Spec(K_i) \to R$, $i = 1, 2$ such that
$j(r_1) = (\overline{u}_1, \overline{u}_2)$ and
$j(r_1) = (\overline{u}_2, \overline{u}_3)$. Then we may choose a
commutative diagram of fields
$$
\xymatrix{
K & K_2 \ar[l] \\
K_1 \ar[u] & k \ar[l] \ar[u]
}
$$
and we may think of $r_1, r_2 \in R(K)$. We consider the
commutative solid diagram
$$
\xymatrix{
\Spec(K') \ar@{..>}[r] \ar@{..>}[d]
&
\Spec(k) \ar[d]_{(\overline{u}_1, \overline{u}_3)} &
\Spec(K) \ar[d]^{(r_1, r_2)} \ar[l]
\\
R \ar[r]^-j &
U \times_B U &
R \times_{s, U, t} R \ar[l]_-{j_{comp}}
}
$$
By exactly the same reasoning as in the first part of the proof, but
this time using that $|j_{comp}|((r_1, r_2))$ is in the image of $|j|$,
we conclude that a field $K'$ and dotted arrows exist making the
diagram commute. This proves that $\sim_R$ is transitive and concludes
the proof that (2) implies (1).
\medskip\noindent
Assume (1) and let $k$ be an algebraically closed field over $B$ whose
cardinality is larger than $\lambda(R)$, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-large-enough}.
Suppose that $\overline{u} \sim_R \overline{u}'$ with
$\overline{u}, \overline{u}' \in U(k)$. By assumption there exists
a point in $|R|$ mapping to $(\overline{u}, \overline{u}') \in |U \times_B U|$.
Hence by
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-large-enough}
we conclude there exists an $\overline{r} \in R(k)$ with
$j(\overline{r}) = (\overline{u}, \overline{u}')$. In this way we see
that (1) implies (3).
\medskip\noindent
Assume (3). Let us show that
$\Im(|j_{comp}|) \subset \Im(|j|)$. Pick any point
$c \in |R \times_{s, U, t} R|$. We may represent this by a morphism
$\overline{c} : \Spec(k) \to R \times_{s, U, t} R$, with $k$ over $B$
having sufficiently large cardinality. By assumption we see that
$j_{comp}(\overline{c}) \in U(k) \times U(k) = (U \times_B U)(k)$
is also the image $j(\overline{r})$ for some $\overline{r} \in R(k)$.
Hence $j_{comp}(c) = j(r)$ in $|U \times_B U|$ as desired (with
$r \in |R|$ the equivalence class of $\overline{r}$). The same argument
shows also that $\Im(|j_{diag}|) \subset \Im(|j|)$ and
$\Im(|j_{flip}|) \subset \Im(|j|)$ (details omitted).
In this way we see that (3) implies (2). At this point we have
shown that (1), (2) and (3) are all equivalent.
\medskip\noindent
It is clear that (4) implies (3) (without any assumptions on $s$, $t$).
To finish the proof of the lemma we show that (1) implies (4) if $s, t$
are locally of finite type. Namely, let $k$ be an algebraically closed
field over $B$. Suppose that $\overline{u} \sim_R \overline{u}'$ with
$\overline{u}, \overline{u}' \in U(k)$. By assumption the algebraic space
$Z = R \times_{j, U \times_B U, (\overline{u}, \overline{u}')} \Spec(k)$
is nonempty. On the other hand, since $j = (t, s)$ is locally of finite type
the morphism $Z \to \Spec(k)$ is locally of finite type as well (use
Morphisms of Spaces, Lemmas \ref{spaces-morphisms-lemma-permanence-finite-type}
and \ref{spaces-morphisms-lemma-base-change-finite-type}).
Hence $Z$ has a $k$ point by
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-locally-finite-type-surjective-geometric-points}
and we conclude that $(\overline{u}, \overline{u}') \in j(R(k))$
as desired. This finishes the proof of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-set-theoretic-equivalence-geometric}
In the situation of Definition \ref{definition-set-theoretic-equivalence}.
The following are equivalent:
\begin{enumerate}
\item The morphism $j$ is a set-theoretic equivalence relation.
\item The morphism $j$ is universally injective and
$j(|R|) \subset |U \times_B U|$ contains the image of
$|j'|$ for any of the morphisms $j'$ as in Equation (\ref{equation-list}).
\item For every algebraically closed field $k$ over $B$ of sufficiently large
cardinality the map $j : R(k) \to U(k) \times U(k)$ is injective and
its image is an equivalence relation.
\end{enumerate}
If $j$ is decent, or locally separated, or quasi-separated
these are also equivalent to
\begin{enumerate}
\item[(4)] For every algebraically closed field $k$ over $B$
the map $j : R(k) \to U(k) \times U(k)$ is injective and its image
is an equivalence relation.
\end{enumerate}
\end{lemma}
\begin{proof}
The implications (1) $\Rightarrow$ (2) and (2) $\Rightarrow$ (3) follow from
Lemma \ref{lemma-set-theoretic-pre-equivalence-geometric}
and the definitions. The same lemma shows that (3) implies
$j$ is a set-theoretic pre-equivalence relation. But of course condition
(3) also implies that $j$ is universally injective, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-universally-injective},
so that $j$ is indeed a set-theoretic equivalence relation.
At this point we know that (1), (2), (3) are all equivalent.
\medskip\noindent
Condition (4) implies (3) without any further hypotheses on $j$. Assume $j$
is decent, or locally separated, or quasi-separated and the equivalent
conditions (1), (2), (3) hold. By
More on Morphisms of Spaces,
Lemma \ref{spaces-more-morphisms-lemma-when-universally-injective-radicial}
we see that $j$ is radicial.
Let $k$ be any algebraically closed field over $B$. Let
$\overline{u}, \overline{u}' \in U(k)$ with
$\overline{u} \sim_R \overline{u}'$. We see that
$R \times_{U \times_B U, (\overline{u}, \overline{u}')} \Spec(k)$
is nonempty. Hence, as $j$ is radicial, its reduction is the spectrum of a
field purely inseparable over $k$. As $k = \overline{k}$ we see that
it is the spectrum of $k$. Whence a point $\overline{r} \in R(k)$
with $t(\overline{r}) = \overline{u}$ and $s(\overline{r}) = \overline{u}'$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-set-theoretic-equivalence}
Let $S$ be a scheme, and let $B$ be an algebraic space over $S$.
Let $j : R \to U \times_B U$ be a pre-relation over $B$.
\begin{enumerate}
\item If $j$ is a pre-equivalence relation, then $j$ is a
set-theoretic pre-equivalence relation. This holds in particular
when $j$ comes from a groupoid in algebraic spaces, or from an
action of a group algebraic space on $U$.
\item If $j$ is an equivalence relation, then $j$ is a
set-theoretic equivalence relation.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-separates-orbits}
Let $B \to S$ be as in Section \ref{section-conventions-notation}.
Let $j : R \to U \times_B U$ be a pre-relation.
Let $\phi : U \to X$ be a morphism of algebraic spaces over $B$.
Consider the diagram
$$
\xymatrix{
(U \times_X U) \times_{(U \times_B U)} R \ar[d]^q \ar[r]_-p & R \ar[d]^j \\
U \times_X U \ar[r]^c & U \times_B U
}
$$
Then we have:
\begin{enumerate}
\item The morphism $\phi$ is set-theoretically invariant if and only
if $p$ is surjective.
\item If $j$ is a set-theoretic pre-equivalence relation then
$\phi$ separates orbits if and only if $p$ and $q$ are surjective.
\item If $p$ and $q$ are surjective, then $j$ is a set-theoretic
pre-equivalence relation (and $\phi$ separates orbits).
\item If $\phi$ is $R$-invariant and $j$ is a set-theoretic pre-equivalence
relation, then $\phi$ separates orbits if and only if the induced morphism
$R \to U \times_X U$ is surjective.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume $\phi$ is set-theoretically invariant. This means that for any
algebraically closed field $k$ over $B$ and any $\overline{r} \in R(k)$
we have $\phi(s(\overline{r})) = \phi(t(\overline{r}))$. Hence
$((\phi(t(\overline{r})), \phi(s(\overline{r}))), \overline{r})$
defines a point in the fibre product mapping to $\overline{r}$ via
$p$. This shows that $p$ is surjective. Conversely, assume $p$ is
surjective. Pick $\overline{r} \in R(k)$. As $p$ is surjective, we
can find a field extension $k \subset K$ and a $K$-valued point
$\tilde r$ of the fibre product with $p(\tilde r) = \overline{r}$.
Then $q(\tilde r) \in U \times_X U$ maps to
$(t(\overline{r}), s(\overline{r}))$ in $U \times_B U$ and we conclude
that $\phi(s(\overline{r})) = \phi(t(\overline{r}))$. This proves
that $\phi$ is set-theoretically invariant.
\medskip\noindent
The proofs of (2), (3), and (4) are omitted. Hint: Assume $k$ is an
algebraically closed field over $B$ of large cardinality. Consider the
associated diagram of sets
$$
\xymatrix{
(U(k) \times_{X(k)} U(k)) \times_{U(k) \times U(k)} R(k) \ar[d]^q \ar[r]_-p &
R(k) \ar[d]^j \\
U(k) \times_{X(k)} U(k) \ar[r]^c & U(k) \times U(k)
}
$$
By the lemmas above the equivalences posed in (2), (3), and (4) become
set-theoretic questions related to the diagram we just displayed, using
that surjectivity translates into surjectivity on $k$-valued points by
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-large-enough}.
\end{proof}
\noindent
Because we have seen above that the notion of a set-theoretically
invariant morphism is a rather weak one in the category of algebraic
spaces, we define an orbit space for a pre-relation as follows.
\begin{definition}
\label{definition-orbit-space}
Let $B \to S$ as in Section \ref{section-conventions-notation}.
Let $j : R \to U \times_B U$ be a pre-relation.