Skip to content

Latest commit

 

History

History
1871 lines (1222 loc) · 35.2 KB

sophia_stdlib.md

File metadata and controls

1871 lines (1222 loc) · 35.2 KB

Standard library

Sophia language offers standard library that consists of several namespaces. Some of them are already in the scope and do not need any actions to be used, while the others require some files to be included.

The out-of-the-box namespaces are:

The following ones need to be included as regular files with .aes suffix, for example

include "List.aes"

Builtin namespaces

They are available without any explicit includes.

Bits

none

Bits.none : bits

A bit field with all bits cleared

all

Bits.all : bits

A bit field with all bits set

set

Bits.set(b : bits, i : int) : bits

Set bit i

clear

Bits.clear(b : bits, i : int) : bits

Clear bit i

test

Bits.test(b : bits, i : int) : bool

Check if bit i is set

sum

Bits.sum(b : bits) : int

Count the number of set bits

union

Bits.union(a : bits, b : bits) : bits

Bitwise disjunction

intersection

Bits.intersection(a : bits, b : bits) : bits

Bitwise conjunction

difference

Bits.difference(a : bits, b : bits) : bits

Each bit is true if and only if it was 1 in a and 0 in b

String

length

String.length(s : string) : int

Returns the length of a string

concat

String.concat(s1 : string, s2 : string) : string

Concatenates two strings

sha3

String.sha3(s : string) : hash

Calculates SHA3 sum of a string.

sha256

String.sha256(s : string) : hash

Calculates SHA256 sum of a string

blake2b

String.blake2b(s : string) : hash

Calculates blake2b of a string

Bytes

to_int

Bytes.to_int(b : bytes(n)) : int

Interprets the byte array as a big endian integer

to_str

Bytes.to_str(b : bytes(n)) : string

Returns the hexadecimal representation of the byte array

concat

Bytes.concat : (a : bytes(m), b : bytes(n)) => bytes(m + n)

Concatenates two byte arrays

split

Bytes.split(a : bytes(m + n)) : bytes(m) * bytes(n)

Splits a byte array at given index

Int

to_str

Int.to_str : int => string

Casts integer to string using decimal representation

Map

lookup

Map.lookup(k : 'k, m : map('k, 'v)) : option('v)

Returns the value under a key in given map as Some or None if the key is not present

lookup_default

Map.lookup_default(k : 'k, m : map('k, 'v), v : 'v) : 'v

Returns the value under a key in given map or the default value v if the key is not present

member

Map.member(k : 'k, m : map('k, 'v)) : bool

Checks if the key is present in the map

delete

Map.delete(k : 'k, m : map('k, 'v)) : map('k, 'v)

Removes the key from the map

size

Map.size(m : map('k, 'v)) : int

Returns the number of elements in the map

to_list

Map.to_list(m : map('k, 'v)) : list('k * 'v)

Returns a list containing pairs of keys and their respective elements.

from_list

Map.from_list(m : list('k * 'v)) : map('k, 'v)

Turns a list of pairs of form (key, value) into a map

Address

to_str

Address.to_str(a : address) : string

Base58 encoded string

is_contract

Address.is_contract(a : address) : bool

Is the address a contract

is_oracle

Address.is_oracle(a : address) : bool

Is the address a registered oracle

is_payable

Address.is_payable(a : address) : bool

Can the address be spent to

to_contract

Address.to_contract(a : address) : C

Cast address to contract type C (where C is a contract)

Crypto

sha3

Crypto.sha3(x : 'a) : hash

Hash any object to SHA3

sha256

Crypto.sha256(x : 'a) : hash

Hash any object to SHA256

blake2b

Crypto.blake2b(x : 'a) : hash

Hash any object to blake2b

verify_sig

Crypto.verify_sig(msg : hash, pubkey : address, sig : signature) : bool

Checks if the signature of msg was made using private key corresponding to the pubkey

ecverify_secp256k1

Crypto.ecverify_secp256k1(msg : hash, addr : bytes(20), sig : bytes(65)) : bool

Verifies a signature for a msg against an Ethereum style address

ecrecover_secp256k1

Crypto.ecrecover_secp256k1(msg : hash, sig : bytes(65)) : option(bytes(20))

Recovers the Ethereum style address from a msg hash and respective signature

verify_sig_secp256k1

Crypto.verify_sig_secp256k1(msg : hash, pubkey : bytes(64), sig : bytes(64)) : bool

Auth

tx_hash

Auth.tx_hash : option(hash)

Gets the transaction hash during authentication.

Oracle

register

Oracle.register(<signature : bytes(64)>, acct : address, qfee : int, ttl : Chain.ttl) : oracle('a, 'b)

Registers new oracle answering questions of type 'a with answers of type 'b.

  • The acct is the address of the oracle to register (can be the same as the contract).
  • signature is a signature proving that the contract is allowed to register the account - the network id + account address + contract address (concatenated as byte arrays) is signed with the private key of the account, proving you have the private key of the oracle to be. If the address is the same as the contract sign is ignored and can be left out entirely.
  • The qfee is the minimum query fee to be paid by a user when asking a question of the oracle.
  • The ttl is the Time To Live for the oracle, either relative to the current height (RelativeTTL(delta)) or a fixed height (FixedTTL(height)).
  • The type 'a is the type of the question to ask.
  • The type 'b is the type of the oracle answers.

Examples:

  Oracle.register(addr0, 25, RelativeTTL(400))
  Oracle.register(addr1, 25, RelativeTTL(500), signature = sign1)

get_question

Oracle.get_question(o : oracle('a, 'b), q : oracle_query('a, 'b)) : 'a

Checks what was the question of query q on oracle o

respond

Oracle.respond(<signature : bytes(64)>, o : oracle('a, 'b), q : oracle_query('a, 'b), 'b) : unit

Responds to the question q on o. Unless the contract address is the same as the oracle address the signature (which is an optional, named argument) needs to be provided. Proving that we have the private key of the oracle by signing the network id + oracle query id + contract address

extend

Oracle.extend(<signature : bytes(64)>, o : oracle('a, 'b), ttl : Chain.ttl) : unit

Extends TTL of an oracle.

  • singature is a named argument and thus optional. Must be the same as for Oracle.register
  • o is the oracle being extended
  • ttl must be RelativeTTL. The time to live of o will be extended by this value.

query_fee

Oracle.query_fee(o : oracle('a, 'b)) : int

Returns the query fee of the oracle

query

Oracle.query(o : oracle('a, 'b), q : 'a, qfee : int, qttl : Chain.ttl, rttl : Chain.ttl) : oracle_query('a, 'b)

Asks the oracle a question.

  • The qfee is the query fee debited to the contract account (Contract.address).
  • The qttl controls the last height at which the oracle can submit a response and can be either fixed or relative.
  • The rttl must be relative and controls how long an answer is kept on the chain. The call fails if the oracle could expire before an answer.

get_answer

Oracle.get_answer(o : oracle('a, 'b), q : oracle_query('a, 'b)) : option('b)

Checks what is the optional query answer

check

Oracle.check(o : oracle('a, 'b)) : bool

Returns true iff the oracle o exists and has correct type

check_query

Oracle.check_query(o : oracle('a, 'b), q : oracle_query('a, 'b)) : bool

It returns true iff the oracle query exist and has the expected type.

AENS

The following functionality is available for interacting with the Aeternity Naming System (AENS). If owner is equal to Contract.address the signature signature is ignored, and can be left out since it is a named argument. Otherwise we need a signature to prove that we are allowed to do AENS operations on behalf of owner. The signature is tied to a network id, i.e. the signature material should be prefixed by the network id.

resolve

AENS.resolve(name : string, key : string) : option('a)

Name resolution. Here name should be a registered name and key one of the attributes associated with this name (for instance "account_pubkey"). The return type ('a) must be resolved at compile time to an atomic type and the value is type checked against this type at run time.

preclaim

AENS.preclaim(owner : address, commitment_hash : hash, <signature : signature>) : unit

The signature should be over network id + owner address + Contract.address (concatenated as byte arrays).

claim

AENS.claim(owner : address, name : string, salt : int, name_fee : int, <signature : signature>) : unit

The signature should be over network id + owner address + name_hash + Contract.address using the private key of the owner account for signing.

transfer

AENS.transfer(owner : address, new_owner : address, name : string, <signature : signature>) : unit

Transfers name to the new owner.

The signature should be over network id + owner address + name_hash + Contract.address using the private key of the owner account for signing.

revoke

AENS.revoke(owner : address, name : string, <signature : signature>) : unit

Revokes the name to extend the ownership time.

The signature should be over network id + owner address + name_hash + Contract.address using the private key of the owner account for signing.

Contract

Values related to the current contract

creator

Contract.creator : address

Address of the entity that signed the contract creation transaction

address

Contract.address : address

Address of the contract account

balance

Contract.balance : int

Amount of coins in the contract account

Call

Values related to the call to the current contract

origin

Call.origin : address

The address of the account that signed the call transaction that led to this call.

caller

Call.caller : address

The address of the entity (possibly another contract) calling the contract.

value

Call.value : int

The amount of coins transferred to the contract in the call. Note that in the init entrypoint this value will be always 0 – in order to get the contract creation value one needs to inspect Contract.balance.

gas

Call.gas_price : int

The gas price of the current call.

gas

Call.gas_left() : int

The amount of gas left for the current call.

Chain

Values and functions related to the chain itself and other entities that live on it.

balance

Chain.balance(a : address) : int

The balance of account a.

block_hash

Chain.block_hash(h : int) : option(bytes(32))

The hash of the block at height h.

block_height

Chain.block_height : int"

The height of the current block (i.e. the block in which the current call will be included).

coinbase

Chain.coinbase : address

The address of the account that mined the current block.

timestamp

Chain.timestamp : int

The timestamp of the current block.

difficulty

Chain.difficulty : int

The difficulty of the current block.

gas

Chain.gas_limit : int

The gas limit of the current block.

event

Chain.event(e : event) : unit

Emits the event. To use this function one needs to define the event type as a datatype in the contract.

Includable namespaces

These need to be explicitly included (with .aes suffix)

List

This module contains common operations on lists like constructing, querying, traversing etc.

is_empty

List.is_empty(l : list('a)) : bool

Returns true iff the list is equal to [].

first

List.first(l : list('a)) : option('a)

Returns Some of the first element of a list or None if the list is empty.

tail

List.tail(l : list('a)) : option(list('a))

Returns Some of a list without its first element or None if the list is empty.

last

List.last(l : list('a)) : option('a)

Returns Some of the last element of a list or None if the list is empty.

contains

List.contains(e : 'a, l : list('a)) : bool

Checks if list l contains element e. Equivalent to List.find(x => x == e, l) != None.

find

List.find(p : 'a => bool, l : list('a)) : option('a)

Finds first element of l fulfilling predicate p as Some or None if no such element exists.

find_indices

List.find_indices(p : 'a => bool, l : list('a)) : list(int)

Returns list of all indices of elements from l that fulfill the predicate p.

nth

List.nth(n : int, l : list('a)) : option('a)

Gets nth element of l as Some or None if l is shorter than n + 1 or n is negative.

get

List.get(n : int, l : list('a)) : 'a

Gets nth element of l forcefully, throwing and error if l is shorter than n + 1 or n is negative.

length

List.length(l : list('a)) : int

Returns length of a list.

from_to

List.from_to(a : int, b : int) : list(int)

Creates an ascending sequence of all integer numbers between a and b (including a and b).

from_to_step

List.from_to_step(a : int, b : int, step : int) : list(int)

Creates an ascending sequence of integer numbers betweeen a and b jumping by given step. Includes a and takes b only if (b - a) mod step == 0. step should be bigger than 0.

replace_at

List.replace_at(n : int, e : 'a, l : list('a)) : list('a)

Replaces nth element of l with e. Throws an error if n is negative or would cause an overflow.

insert_at

List.insert_at(n : int, e : 'a, l : list('a)) : list('a)

Inserts e into l to be on position n by shifting following elements further. For instance,

insert_at(2, 9, [1,2,3,4])

will yield [1,2,9,3,4].

insert_by

List.insert_by(cmp : (('a, 'a) => bool), x : 'a, l : list('a)) : list('a)

Assuming that cmp represents < comparison, inserts x before the first element in the list l which is greater than it. For instance,

insert_by((a, b) => a < b, 4, [1,2,3,5,6,7])

will yield [1,2,3,4,5,6,7]

foldr

List.foldr(cons : ('a, 'b) => 'b, nil : 'b, l : list('a)) : 'b

Right fold of a list. Assuming l = [x, y, z] will return f(x, f(y, f(z, nil))). Not tail recursive.

foldl

List.foldl(rcons : ('b, 'a) => 'b, acc : 'b, l : list('a)) : 'b

Left fold of a list. Assuming l = [x, y, z] will return f(f(f(acc, x), y), z). Tail recursive.

foreach

List.foreach(l : list('a), f : 'a => unit) : unit

Evaluates f on each element of a list.

reverse

List.reverse(l : list('a)) : list('a)

Returns a copy of l with reversed order of elements.

map

List.map(f : 'a => 'b, l : list('a)) : list('b)

Maps function f over a list. For instance

map((x) => x == 0, [1, 2, 0, 3, 0])

will yield [false, false, true, false, true]

flat_map

List.flat_map(f : 'a => list('b), l : list('a)) : list('b)

Maps f over a list and then flattens it. For instance

flat_map((x) => [x, x * 10], [1, 2, 3])

will yield [1, 10, 2, 20, 3, 30]

filter

List.filter(p : 'a => bool, l : list('a)) : list('a)

Filters out elements of l that fulfill predicate p. For instance

filter((x) => x > 0, [-1, 1, -2, 0, 1, 2, -3])

will yield [1, 1, 2]

take

List.take(n : int, l : list('a)) : list('a)

Takes n first elements of l. Fails if n is negative. If n is greater than length of a list it will return whole list.

drop

List.drop(n : int, l : list('a)) : list('a)

Removes n first elements of l. Fails if n is negative. If n is greater than length of a list it will return [].

take_while

List.take_while(p : 'a => bool, l : list('a)) : list('a)

Returns longest prefix of l in which all elements fulfill p.

drop_while

List.drop_while(p : 'a => bool, l : list('a)) : list('a)

Removes longest prefix from l in which all elements fulfill p.

partition

List.partition(p : 'a => bool, l : list('a)) : (list('a) * list('a))

Separates elements of l that fulfill p and these that do not. Elements fulfilling predicate will be in the right list. For instance

partition((x) => x > 0, [-1, 1, -2, 0, 1, 2, -3])

will yield ([1, 1, 2], [-1, -2, 0, -3])

flatten

List.flatten(ll : list(list('a))) : list('a)

Flattens a list of lists into a one list.

all

List.all(p : 'a => bool, l : list('a)) : bool

Checks if all elements of a list fulfill predicate p.

any

List.any(p : 'a => bool, l : list('a)) : bool

Checks if any element of a list fulfills predicate p.

sum

List.sum(l : list(int)) : int

Sums elements of a list. Returns 0 if the list is empty.

product

List.product(l : list(int)) : int

Multiplies elements of a list. Returns 1 if the list is empty.

zip_with

List.zip_with(f : ('a, 'b) => 'c, l1 : list('a), l2 : list('b)) : list('c)

"zips" two lists with a function. n-th element of resulting list will be equal to f(x1, x2) where x1 and x2 are n-th elements of l1 and l2 respectively. Will cut off the tail of the longer list. For instance

zip_with((a, b) => a + b, [1,2], [1,2,3])

will yield [2,4]

zip

List.zip(l1 : list('a), l2 : list('b)) : list('a * 'b)

Special case of zip_with where the zipping function is (a, b) => (a, b).

unzip

List.unzip(l : list('a * 'b)) : list('a) * list('b)

Opposite to the zip operation. Takes a list of pairs and returns pair of lists with respective elements on same indices.

merge

List.merge(lesser_cmp : ('a, 'a) => bool, l1 : list('a), l2 : list('a)) : list('a)

Merges two sorted lists into a single sorted list. O(length(l1) + length(l2))

sort

List.sort(lesser_cmp : ('a, 'a) => bool, l : list('a)) : list('a)

Sorts a list using given comparator. lesser_cmp(x, y) should return true iff x < y. If lesser_cmp is not transitive or there exists an element x such that lesser_cmp(x, x) or there exists a pair of elements x and y such that lesser_cmp(x, y) && lesser_cmp(y, x) then the result is undefined. O(length(l) * log_2(length(l))).

intersperse

List.intersperse(delim : 'a, l : list('a)) : list('a)

Intersperses elements of l with delim. Does nothing on empty lists and singletons. For instance

intersperse(0, [1, 2, 3, 4])

will yield [1, 0, 2, 0, 3, 0, 4]

enumerate

List.enumerate(l : list('a)) : list(int * 'a)

Equivalent to zip with [0..length(l)], but slightly faster.

Option

Common operations on option types and lists of options.

is_none

Option.is_none(o : option('a)) : bool

Returns true iff o == None

is_some

Option.is_some(o : option('a)) : bool

Returns true iff o is not None.

match

Option.match(n : 'b, s : 'a => 'b, o : option('a)) : 'b

Behaves like pattern matching on option using two case functions.

default

Option.default(def : 'a, o : option('a)) : 'a

Escapes option wrapping by providing default value for None.

force

Option.force(o : option('a)) : 'a

Forcefully escapes option wrapping assuming it is Some. Throws error on None.

contains

Option.contains(e : 'a, o : option('a)) : bool

Returns true if and only if o contains element equal to e. Equivalent to Option.match(false, x => x == e, o).

on_elem

Option.on_elem(o : option('a), f : 'a => unit) : unit

Evaluates f on element under Some. Does nothing on None.

map

Option.map(f : 'a => 'b, o : option('a)) : option('b)

Maps element under Some. Leaves None unchanged.

map2

Option.map2(f : ('a, 'b) => 'c, o1 : option('a), o2 : option('b)) : option('c)

Applies arity 2 function over two options' elements. Returns Some iff both of o1 and o2 were Some, or None otherwise. For instance

map2((a, b) => a + b, Some(1), Some(2))

will yield Some(3) and

map2((a, b) => a + b, Some(1), None)

will yield None.

map3

Option.map3(f : ('a, 'b, 'c) => 'd, o1 : option('a), o2 : option('b), o3 : option('c)) : option('d)

Same as map2 but with arity 3 function.

app_over

Option.app_over(f : option ('a => 'b), o : option('a)) : option('b)

Applies function under option over argument under option. If either of them is None the result will be None as well. For instance

app_over(Some((x) => x + 1), Some(1))

will yield Some(2) and

app_over(Some((x) => x + 1), None)

will yield None.

flat_map

Option.flat_map(f : 'a => option('b), o : option('a)) : option('b)

Performs monadic bind on an option. Extracts element from o (if present) and forms new option from it. For instance

flat_map((x) => Some(x + 1), Some(1))

will yield Some(2) and

flat_map((x) => Some(x + 1), None)

will yield None.

to_list

Option.to_list(o : option('a)) : list('a)

Turns o into an empty (if None) or singleton (if Some) list.

filter_options

Option.filter_options(l : list(option('a))) : list('a)

Removes Nones from list and unpacks all remaining Somes. For instance

filter_options([Some(1), None, Some(2)])

will yield [1, 2].

seq_options

Option.seq_options(l : list (option('a))) : option (list('a))

Tries to unpack all elements of a list from Somes. Returns None if at least element of l is None. For instance

seq_options([Some(1), Some(2)])

will yield Some([1, 2]), but

seq_options([Some(1), Some(2), None])

will yield None.

choose

Option.choose(o1 : option('a), o2 : option('a)) : option('a)

Out of two options choose the one that is Some, or None if both are Nones.

choose_first

Option.choose_first(l : list(option('a))) : option('a)

Same as choose, but chooses from a list insted of two arguments.

Func

Functional combinators.

id

Func.id(x : 'a) : 'a

Identity function. Returns its argument.

const

Func.const(x : 'a) : 'b => 'a = (y) => x

Constant function constructor. Given x returns a function that returns x regardless of its argument.

flip

Func.flip(f : ('a, 'b) => 'c) : ('b, 'a) => 'c

Switches order of arguments of arity 2 function.

comp

Func.comp(f : 'b => 'c, g : 'a => 'b) : 'a => 'c

Function composition. comp(f, g)(x) == f(g(x)).

pipe

Func.pipe(f : 'a => 'b, g : 'b => 'c) : 'a => 'c

Flipped function composition. pipe(f, g)(x) == g(f(x)).

rapply

Func.rapply(x : 'a, f : 'a => 'b) : 'b

Reverse application. rapply(x, f) == f(x).

recur

Func.recur(f : ('arg => 'res, 'arg) => 'res) : 'arg => 'res

The Z combinator. Allows performing local recursion and having anonymous recursive lambdas. To make function A => B recursive the user needs to transform it to take two arguments instead – one of type A => B which is going to work as a self-reference, and the other one of type A which is the original argument. Therefore, transformed function should have (A => B, A) => B signature.

Example usage:

let factorial = recur((fac, n) => if(n < 2) 1 else n * fac(n - 1))

If the function is going to take more than one argument it will need to be either tuplified or have curried out latter arguments.

Example (factorial with custom step):

// tuplified version
let factorial_t(n, step) =
  let fac(rec, args) =
    let (n, step) = args
    if(n < 2) 1 else n * rec((n - step, step))
  recur(fac)((n, step))

// curried version
let factorial_c(n, step) =
  let fac(rec, n) = (step) =>
    if(n < 2) 1 else n * rec(n - 1)(step)
  recur(fac)(n)(step)

iter

Func.iter(n : int, f : 'a => 'a) : 'a => 'a

nth composition of f with itself, for instance iter(3, f) is equivalent to (x) => f(f(f(x))).

curry

Func.curry2(f : ('a, 'b) => 'c) : 'a => ('b => 'c)
Func.curry3(f : ('a, 'b, 'c) => 'd) : 'a => ('b => ('c => 'd))

Turns a function that takes n arguments into a curried function that takes one argument and returns a function that waits for the rest in the same manner. For instance curry2((a, b) => a + b)(1)(2) == 3.

uncurry

Func.uncurry2(f : 'a => ('b => 'c)) : ('a, 'b) => 'c
Func.uncurry3(f : 'a => ('b => ('c => 'd))) : ('a, 'b, 'c) => 'd

Opposite to curry.

tuplify

Func.tuplify2(f : ('a, 'b) => 'c) : (('a * 'b)) => 'c
Func.tuplify3(f : ('a, 'b, 'c) => 'd) : 'a * 'b * 'c => 'd

Turns a function that takes n arguments into a function that takes an n-tuple.

untuplify

Func.untuplify2(f : 'a * 'b => 'c) : ('a, 'b) => 'c
Func.untuplify3(f : 'a * 'b * 'c => 'd) : ('a, 'b, 'c) => 'd

Opposite to tuplify.

Pair

Common operations on 2-tuples.

fst

Pair.fst(t : ('a * 'b)) : 'a

First element projection.

snd

Pair.snd(t : ('a * 'b)) : 'b

Second element projection.

map1

Pair.map1(f : 'a => 'c, t : ('a * 'b)) : ('c * 'b)

Applies function over first element.

map2

Pair.map2(f : 'b => 'c, t : ('a * 'b)) : ('a * 'c)

Applies function over second element.

bimap

Pair.bimap(f : 'a => 'c, g : 'b => 'd, t : ('a * 'b)) : ('c * 'd)

Applies functions over respective elements.

swap

Pair.swap(t : ('a * 'b)) : ('b * 'a)

Swaps elements.

Triple

fst

Triple.fst(t : ('a * 'b * 'c)) : 'a

First element projection.

snd

Triple.snd(t : ('a * 'b * 'c)) : 'b

Second element projection.

thd

Triple.thd(t : ('a * 'b * 'c)) : 'c

Third element projection.

map1

Triple.map1(f : 'a => 'm, t : ('a * 'b * 'c)) : ('m * 'b * 'c)

Applies function over first element.

map2

Triple.map2(f : 'b => 'm, t : ('a * 'b * 'c)) : ('a * 'm * 'c)

Applies function over second element.

map3

Triple.map3(f : 'c => 'm, t : ('a * 'b * 'c)) : ('a * 'b * 'm)

Applies function over third element.

trimap

Triple.trimap(f : 'a => 'x, g : 'b => 'y, h : 'c => 'z, t : ('a * 'b * 'c)) : ('x * 'y * 'z)

Applies functions over respective elements.

swap

Triple.swap(t : ('a * 'b * 'c)) : ('c * 'b * 'a)

Swaps first and third element.

rotr

Triple.rotr(t : ('a * 'b * 'c)) : ('c * 'a * 'b)

Cyclic rotation of the elements to the right.

rotl

Triple.rotl(t : ('a * 'b * 'c)) : ('b * 'c * 'a)

Cyclic rotation of the elements to the left.

BLS12_381

Types

  • fp // Built-in (Montgomery) integer representation 32 bytes
  • fr // Built-in (Montgomery) integer representation 48 bytes
  • record fp2 = { x1 : fp, x2 : fp }
  • record g1 = { x : fp, y : fp, z : fp }
  • record g2 = { x : fp2, y : fp2, z : fp2 }
  • record gt = { x1 : fp, x2 : fp, x3 : fp, x4 : fp, x5 : fp, x6 : fp, x7 : fp, x8 : fp, x9 : fp, x10 : fp, x11 : fp, x12 : fp }

pairing_check

BLS12_381.pairing_check(xs : list(g1), ys : list(g2)) : bool

Pairing check of a list of points, xs and ys should be of equal length.

int_to_fr

BLS12_381.int_to_fr(x : int) : fr

Convert an integer to an fr - a 32 bytes internal (Montgomery) integer representation.

int_to_fp

BLS12_381.int_to_fp(x : int) : fp

Convert an integer to an fp - a 48 bytes internal (Montgomery) integer representation.

fr_to_int

BLS12_381.fr_to_int(x : fr)  : int

Convert a fr value into an integer.

fp_to_int

BLS12_381.fp_to_int(x : fp)  : int

Convert a fp value into an integer.

mk_g1

BLS12_381.mk_g1(x : int, y : int, z : int) : g1

Construct a g1 point from three integers.

mk_g2

BLS12_381.mk_g2(x1 : int, x2 : int, y1 : int, y2 : int, z1 : int, z2 : int) : g2

Construct a g2 point from six integers.

g1_neg

BLS12_381.g1_neg(p : g1) : g1

Negate a g1 value.

g1_norm

BLS12_381.g1_norm(p : g1) : g1

Normalize a g1 value.

g1_valid

BLS12_381.g1_valid(p : g1) : bool

Check that a g1 value is a group member.

g1_is_zero

BLS12_381.g1_is_zero(p : g1) : bool

Check if a g1 value corresponds to the zero value of the group.

g1_add

BLS12_381.g1_add(p : g1, q : g1) : g1

Add two g1 values.

g1_mul

BLS12_381.g1_mul(k : fr, p : g1) : g1

Scalar multiplication for g1.

g2_neg

BLS12_381.g2_neg(p : g2) : g2

Negate a g2 value.

g2_norm

BLS12_381.g2_norm(p : g2) : g2

Normalize a g2 value.

g2_valid

BLS12_381.g2_valid(p : g2) : bool

Check that a g2 value is a group member.

g2_is_zero

BLS12_381.g2_is_zero(p : g2) : bool

Check if a g2 value corresponds to the zero value of the group.

g2_add

BLS12_381.g2_add(p : g2, q : g2) : g2

Add two g2 values.

g2_mul

BLS12_381.g2_mul(k : fr, p : g2) : g2

Scalar multiplication for g2.

gt_inv

BLS12_381.gt_inv(p : gt) : gt

Invert a gt value.

gt_add

BLS12_381.gt_add(p : gt, q : gt) : gt

Add two gt values.

gt_mul

BLS12_381.gt_mul(p : gt, q : gt) : gt

Multiply two gt values.

gt_pow

BLS12_381.gt_pow(p : gt, k : fr) : gt

Calculate exponentiation p ^ k.

gt_is_one

BLS12_381.gt_is_one(p : gt) : bool

Compare a gt value to the unit value of the Gt group.

pairing

BLS12_381.pairing(p : g1, q : g2) : gt

Compute the pairing of a g1 value and a g2 value.

miller_loop

BLS12_381.miller_loop(p : g1, q : g2) : gt

Do the Miller loop stage of pairing for g1 and g2.

final_exp

BLS12_381.final_exp(p : gt) : gt

Perform the final exponentiation step of pairing for a gt value.

Frac

This namespace provides operations on rational numbers. A rational number is represented as a fraction of two integers which are stored internally in the frac datatype.

The datatype consists of three constructors Neg/2, Zero/0 and Pos/2 which determine the sign of the number. Both values stored in Neg and Pos need to be strictly positive integers. However, when creating a frac you should never use the constructors explicitly. Instead of that, always use provided functions like make_frac or from_int. This helps keeping the internal representation well defined.

The described below functions take care of the normalization of the fractions – they won't grow if it is unnecessary. Please note that the size of frac can be still very big while the value is actually very close to a natural number – the division of two extremely big prime numbers will be as big as both of them. To face this issue the optimize function is provided. It will approximate the value of the fraction to fit in the given error margin and to shrink its size as much as possible.

Important note: frac must not be compared using standard <-like operators. The operator comparison is not possible to overload at this moment, nor the language provides checkers to prevent unintended usage of them. Therefore the typechecker will allow that and the results of such comparison will be unspecified. You should use lt, geq, eq etc instead.

make_frac

Frac.make_frac(n : int, d : int) : frac

Creates a fraction out of numerator and denominator. Automatically normalizes, so make_frac(2, 4) and make_frac(1, 2) will yield same results.

num

Frac.num(f : frac) : int

Returns the numerator of a fraction.

den

Frac.den(f : frac) : int

Returns the denominator of a fraction.

to_pair

Frac.to_pair(f : frac) : int * int

Turns a fraction into a pair of numerator and denominator.

sign

Frac.sign(f : frac) : int

Returns the signum of a fraction, -1, 0, 1 if negative, zero, positive respectively.

to_str

Frac.to_str(f : frac) : string

Conversion to string. Does not display division by 1 or denominator if equals zero.

simplify

Frac.simplify(f : frac) : frac

Reduces fraction to normal form if for some reason it is not in it.

eq

Frac.eq(a : frac, b : frac) : bool

Checks if a is equal to b.

neq

Frac.neq(a : frac, b : frac) : bool

Checks if a is not equal to b.

geq

Frac.geq(a : frac, b : frac) : bool

Checks if a is greater or equal to b.

leq

Frac.leq(a : frac, b : frac) : bool

Checks if a is lesser or equal to b.

gt

Frac.gt(a : frac, b : frac) : bool

Checks if a is greater than b.

lt

Frac.lt(a : frac, b : frac) : bool

Checks if a is lesser than b.

min

Frac.min(a : frac, b : frac) : frac

Chooses lesser of the two fractions.

max

Frac.max(a : frac, b : frac) : frac

Chooses greater of the two fractions.

abs

Frac.abs(f : frac) : frac

Absolute value.

from_int

Frac.from_int(n : int) : frac

From integer conversion. Effectively make_frac(n, 1).

floor

Frac.floor(f : frac) : int

Rounds a fraction to the nearest lesser or equal integer.

ceil

Frac.ceil(f : frac) : int

Rounds a fraction to the nearest greater or equal integer.

round_to_zero

Frac.round_to_zero(f : frac) : int

Rounds a fraction towards zero. Effectively ceil if lesser than zero and floor if greater.

round_from_zero

Frac.round_from_zero(f : frac) : int

Rounds a fraction from zero. Effectively ceil if greater than zero and floor if lesser.

round

Frac.round(f : frac) : int

Rounds a fraction to a nearest integer. If two integers are in the same distance it will choose the even one.

add

Frac.add(a : frac, b : frac) : frac

Sum of the fractions.

neg

Frac.neg(a : frac) : frac

Negation of the fraction.

sub

Frac.sub(a : frac, b : frac) : frac

Subtraction of two fractions.

inv

Frac.inv(a : frac) : frac

Inverts a fraction. Throws error if a is zero.

mul

Frac.mul(a : frac, b : frac) : frac

Multiplication of two fractions.

div

Frac.div(a : frac, b : frac) : frac

Division of two fractions.

int_exp

Frac.int_exp(b : frac, e : int) : frac

Takes b to the power of e. The exponent can be a negative value.

optimize

Frac.optimize(f : frac, loss : frac) : frac

Shrink the internal size of a fraction as much as possible by approximating it to the point where the error would exceed the loss value.

is_sane

Frac.is_sane(f : frac) : bool

For debugging. If it ever returns false in a code that doesn't call frac constructors or accept arbitrary fracs from the surface you should report it as a bug

If you expect getting calls with malformed fracs in your contract, you should use this function to verify the input.