-
Notifications
You must be signed in to change notification settings - Fork 36
/
run_convert_from_tf.py
373 lines (347 loc) · 18.2 KB
/
run_convert_from_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import os
import re
import pickle
import argparse
import io
import requests
import torch
import stylegan2
from stylegan2 import utils
pretrained_model_urls = {
'car-config-e': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-car-config-e.pkl',
'car-config-f': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-car-config-f.pkl',
'cat-config-f': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-cat-config-f.pkl',
'church-config-f': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-church-config-f.pkl',
'ffhq-config-e': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-ffhq-config-e.pkl',
'ffhq-config-f': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-ffhq-config-f.pkl',
'horse-config-f': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/stylegan2-horse-config-f.pkl',
'car-config-e-Gorig-Dorig': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-car-config-e-Gorig-Dorig.pkl',
'car-config-e-Gorig-Dresnet': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-car-config-e-Gorig-Dresnet.pkl',
'car-config-e-Gorig-Dskip': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-car-config-e-Gorig-Dskip.pkl',
'car-config-e-Gresnet-Dorig': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-car-config-e-Gresnet-Dorig.pkl',
'car-config-e-Gresnet-Dresnet': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-car-config-e-Gresnet-Dresnet.pkl',
'car-config-e-Gresnet-Dskip': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-car-config-e-Gresnet-Dskip.pkl',
'car-config-e-Gskip-Dorig': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-car-config-e-Gskip-Dorig.pkl',
'car-config-e-Gskip-Dresnet': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-car-config-e-Gskip-Dresnet.pkl',
'car-config-e-Gskip-Dskip': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-car-config-e-Gskip-Dskip.pkl',
'ffhq-config-e-Gorig-Dorig': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-ffhq-config-e-Gorig-Dorig.pkl',
'ffhq-config-e-Gorig-Dresnet': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-ffhq-config-e-Gorig-Dresnet.pkl',
'ffhq-config-e-Gorig-Dskip': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-ffhq-config-e-Gorig-Dskip.pkl',
'ffhq-config-e-Gresnet-Dorig': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-ffhq-config-e-Gresnet-Dorig.pkl',
'ffhq-config-e-Gresnet-Dresnet': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-ffhq-config-e-Gresnet-Dresnet.pkl',
'ffhq-config-e-Gresnet-Dskip': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-ffhq-config-e-Gresnet-Dskip.pkl',
'ffhq-config-e-Gskip-Dorig': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-ffhq-config-e-Gskip-Dorig.pkl',
'ffhq-config-e-Gskip-Dresnet': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-ffhq-config-e-Gskip-Dresnet.pkl',
'ffhq-config-e-Gskip-Dskip': 'http://d36zk2xti64re0.cloudfront.net/stylegan2/networks/table2/stylegan2-ffhq-config-e-Gskip-Dskip.pkl',
}
class Unpickler(pickle.Unpickler):
def find_class(self, module, name):
if module == 'dnnlib.tflib.network' and name == 'Network':
return utils.AttributeDict
return super(Unpickler, self).find_class(module, name)
def load_tf_models_file(fpath):
with open(fpath, 'rb') as fp:
return Unpickler(fp).load()
def load_tf_models_url(url):
print('Downloading file {}...'.format(url))
with requests.Session() as session:
with session.get(url) as ret:
fp = io.BytesIO(ret.content)
return Unpickler(fp).load()
def convert_kwargs(static_kwargs, kwargs_mapping):
kwargs = utils.AttributeDict()
for key, value in static_kwargs.items():
if key in kwargs_mapping:
if value == 'lrelu':
value = 'leaky:0.2'
for k in utils.to_list(kwargs_mapping[key]):
kwargs[k] = value
return kwargs
_PERMITTED_MODELS = ['G_main', 'G_mapping', 'G_synthesis_stylegan2', 'D_stylegan2', 'D_main', 'G_synthesis']
def convert_from_tf(tf_state):
tf_state = utils.AttributeDict.convert_dict_recursive(tf_state)
model_type = tf_state.build_func_name
assert model_type in _PERMITTED_MODELS, \
'Found model type {}. '.format(model_type) + \
'Allowed model types are: {}'.format(_PERMITTED_MODELS)
if model_type == 'G_main':
kwargs = convert_kwargs(
static_kwargs=tf_state.static_kwargs,
kwargs_mapping={
'dlatent_avg_beta': 'dlatent_avg_beta'
}
)
kwargs.G_mapping = convert_from_tf(tf_state.components.mapping)
kwargs.G_synthesis = convert_from_tf(tf_state.components.synthesis)
G = stylegan2.models.Generator(**kwargs)
for name, var in tf_state.variables:
if name == 'dlatent_avg':
G.dlatent_avg.data.copy_(torch.from_numpy(var))
kwargs = convert_kwargs(
static_kwargs=tf_state.static_kwargs,
kwargs_mapping={
'truncation_psi': 'truncation_psi',
'truncation_cutoff': 'truncation_cutoff',
'truncation_psi_val': 'truncation_psi',
'truncation_cutoff_val': 'truncation_cutoff'
}
)
G.set_truncation(**kwargs)
return G
if model_type == 'G_mapping':
kwargs = convert_kwargs(
static_kwargs=tf_state.static_kwargs,
kwargs_mapping={
'mapping_nonlinearity': 'activation',
'normalize_latents': 'normalize_input',
'mapping_lr_mul': 'lr_mul'
}
)
kwargs.num_layers = sum(
1 for var_name, _ in tf_state.variables
if re.match('Dense[0-9]+/weight', var_name)
)
for var_name, var in tf_state.variables:
if var_name == 'LabelConcat/weight':
kwargs.label_size = var.shape[0]
if var_name == 'Dense0/weight':
kwargs.latent_size = var.shape[0]
kwargs.hidden = var.shape[1]
if var_name == 'Dense{}/bias'.format(kwargs.num_layers - 1):
kwargs.out_size = var.shape[0]
G_mapping = stylegan2.models.GeneratorMapping(**kwargs)
for var_name, var in tf_state.variables:
if re.match('Dense[0-9]+/[a-zA-Z]*', var_name):
layer_idx = int(re.search('Dense(\d+)/[a-zA-Z]*', var_name).groups()[0])
if var_name.endswith('weight'):
G_mapping.main[layer_idx].layer.weight.data.copy_(
torch.from_numpy(var.T).contiguous())
elif var_name.endswith('bias'):
G_mapping.main[layer_idx].bias.data.copy_(torch.from_numpy(var))
if var_name == 'LabelConcat/weight':
G_mapping.embedding.weight.data.copy_(torch.from_numpy(var))
return G_mapping
if model_type == 'G_synthesis_stylegan2' or model_type == 'G_synthesis':
assert tf_state.static_kwargs.get('fused_modconv', True), \
'Can not load TF networks that use `fused_modconv=False`'
noise_tensors = []
conv_vars = {}
for var_name, var in tf_state.variables:
if var_name.startswith('noise'):
noise_tensors.append(torch.from_numpy(var))
else:
layer_size = int(re.search('(\d+)x[0-9]+/*', var_name).groups()[0])
if layer_size not in conv_vars:
conv_vars[layer_size] = {}
var_name = var_name.replace('{}x{}/'.format(layer_size, layer_size), '')
conv_vars[layer_size][var_name] = var
noise_tensors = sorted(noise_tensors, key=lambda x:x.size(-1))
kwargs = convert_kwargs(
static_kwargs=tf_state.static_kwargs,
kwargs_mapping={
'nonlinearity': 'activation',
'resample_filter': ['conv_filter', 'skip_filter']
}
)
kwargs.skip = False
kwargs.resnet = True
kwargs.channels = []
for size in sorted(conv_vars.keys(), reverse=True):
if size == 4:
if 'ToRGB/weight' in conv_vars[size]:
kwargs.skip = True
kwargs.resnet = False
kwargs.latent_size = conv_vars[size]['Conv/mod_weight'].shape[0]
kwargs.channels.append(conv_vars[size]['Conv/bias'].shape[0])
else:
kwargs.channels.append(conv_vars[size]['Conv1/bias'].shape[0])
if 'ToRGB/bias' in conv_vars[size]:
kwargs.data_channels = conv_vars[size]['ToRGB/bias'].shape[0]
G_synthesis = stylegan2.models.GeneratorSynthesis(**kwargs)
G_synthesis.const.data.copy_(torch.from_numpy(conv_vars[4]['Const/const']).squeeze(0))
def assign_weights(layer, weight, bias, mod_weight, mod_bias, noise_strength, transposed=False):
layer.bias.data.copy_(torch.from_numpy(bias))
layer.layer.weight.data.copy_(torch.tensor(noise_strength))
layer.layer.layer.dense.layer.weight.data.copy_(
torch.from_numpy(mod_weight.T).contiguous())
layer.layer.layer.dense.bias.data.copy_(torch.from_numpy(mod_bias + 1))
weight = torch.from_numpy(weight).permute((3, 2, 0, 1)).contiguous()
if transposed:
weight = weight.flip(dims=[2,3])
layer.layer.layer.weight.data.copy_(weight)
conv_blocks = G_synthesis.conv_blocks
for i, size in enumerate(sorted(conv_vars.keys())):
block = conv_blocks[i]
if size == 4:
assign_weights(
layer=block.conv_block[0],
weight=conv_vars[size]['Conv/weight'],
bias=conv_vars[size]['Conv/bias'],
mod_weight=conv_vars[size]['Conv/mod_weight'],
mod_bias=conv_vars[size]['Conv/mod_bias'],
noise_strength=conv_vars[size]['Conv/noise_strength'],
)
else:
assign_weights(
layer=block.conv_block[0],
weight=conv_vars[size]['Conv0_up/weight'],
bias=conv_vars[size]['Conv0_up/bias'],
mod_weight=conv_vars[size]['Conv0_up/mod_weight'],
mod_bias=conv_vars[size]['Conv0_up/mod_bias'],
noise_strength=conv_vars[size]['Conv0_up/noise_strength'],
transposed=True
)
assign_weights(
layer=block.conv_block[1],
weight=conv_vars[size]['Conv1/weight'],
bias=conv_vars[size]['Conv1/bias'],
mod_weight=conv_vars[size]['Conv1/mod_weight'],
mod_bias=conv_vars[size]['Conv1/mod_bias'],
noise_strength=conv_vars[size]['Conv1/noise_strength'],
)
if 'Skip/weight' in conv_vars[size]:
block.projection.weight.data.copy_(torch.from_numpy(
conv_vars[size]['Skip/weight']).permute((3, 2, 0, 1)).contiguous())
to_RGB = G_synthesis.to_data_layers[i]
if to_RGB is not None:
to_RGB.bias.data.copy_(torch.from_numpy(conv_vars[size]['ToRGB/bias']))
to_RGB.layer.weight.data.copy_(torch.from_numpy(
conv_vars[size]['ToRGB/weight']).permute((3, 2, 0, 1)).contiguous())
to_RGB.layer.dense.bias.data.copy_(
torch.from_numpy(conv_vars[size]['ToRGB/mod_bias'] + 1))
to_RGB.layer.dense.layer.weight.data.copy_(
torch.from_numpy(conv_vars[size]['ToRGB/mod_weight'].T).contiguous())
if not tf_state.static_kwargs.get('randomize_noise', True):
G_synthesis.static_noise(noise_tensors=noise_tensors)
return G_synthesis
if model_type == 'D_stylegan2' or model_type == 'D_main':
output_vars = {}
conv_vars = {}
for var_name, var in tf_state.variables:
if var_name.startswith('Output'):
output_vars[var_name.replace('Output/', '')] = var
else:
layer_size = int(re.search('(\d+)x[0-9]+/*', var_name).groups()[0])
if layer_size not in conv_vars:
conv_vars[layer_size] = {}
var_name = var_name.replace('{}x{}/'.format(layer_size, layer_size), '')
conv_vars[layer_size][var_name] = var
kwargs = convert_kwargs(
static_kwargs=tf_state.static_kwargs,
kwargs_mapping={
'nonlinearity': 'activation',
'resample_filter': ['conv_filter', 'skip_filter'],
'mbstd_group_size': 'mbstd_group_size'
}
)
kwargs.skip = False
kwargs.resnet = True
kwargs.channels = []
for size in sorted(conv_vars.keys(), reverse=True):
if size == 4:
if 'FromRGB/weight' in conv_vars[size]:
kwargs.skip = True
kwargs.resnet = False
kwargs.channels.append(conv_vars[size]['Conv/bias'].shape[0])
kwargs.dense_hidden = conv_vars[size]['Dense0/bias'].shape[0]
else:
kwargs.channels.append(conv_vars[size]['Conv0/bias'].shape[0])
if 'FromRGB/weight' in conv_vars[size]:
kwargs.data_channels = conv_vars[size]['FromRGB/weight'].shape[-2]
output_size = output_vars['bias'].shape[0]
if output_size > 1:
kwargs.label_size = output_size
D = stylegan2.models.Discriminator(**kwargs)
def assign_weights(layer, weight, bias):
layer.bias.data.copy_(torch.from_numpy(bias))
layer.layer.weight.data.copy_(
torch.from_numpy(weight).permute((3, 2, 0, 1)).contiguous())
conv_blocks = D.conv_blocks
for i, size in enumerate(sorted(conv_vars.keys())):
block = conv_blocks[-i - 1]
if size == 4:
assign_weights(
layer=block[-1].conv_block[0],
weight=conv_vars[size]['Conv/weight'],
bias=conv_vars[size]['Conv/bias'],
)
else:
assign_weights(
layer=block.conv_block[0],
weight=conv_vars[size]['Conv0/weight'],
bias=conv_vars[size]['Conv0/bias'],
)
assign_weights(
layer=block.conv_block[1],
weight=conv_vars[size]['Conv1_down/weight'],
bias=conv_vars[size]['Conv1_down/bias'],
)
if 'Skip/weight' in conv_vars[size]:
block.projection.weight.data.copy_(torch.from_numpy(
conv_vars[size]['Skip/weight']).permute((3, 2, 0, 1)).contiguous())
from_RGB = D.from_data_layers[-i - 1]
if from_RGB is not None:
from_RGB.bias.data.copy_(torch.from_numpy(conv_vars[size]['FromRGB/bias']))
from_RGB.layer.weight.data.copy_(torch.from_numpy(
conv_vars[size]['FromRGB/weight']).permute((3, 2, 0, 1)).contiguous())
return D
def get_arg_parser():
parser = argparse.ArgumentParser(
description='Convert tensorflow stylegan2 model to pytorch.',
epilog='Pretrained models that can be downloaded:\n{}'.format(
'\n'.join(pretrained_model_urls.keys()))
)
parser.add_argument(
'-i',
'--input',
help='File path to pickled tensorflow models.',
type=str,
default=None,
)
parser.add_argument(
'-d',
'--download',
help='Download the specified pretrained model. Use --help for info on available models.',
type=str,
default=None,
)
parser.add_argument(
'-o',
'--output',
help='One or more output file paths. Alternatively a directory path ' + \
'where all models will be saved. Default: current directory',
type=str,
nargs='*',
default=['.'],
)
return parser
def main():
args = get_arg_parser().parse_args()
assert bool(args.input) != bool(args.download), \
'Incorrect input format. Can only take either one ' + \
'input filepath to a pickled tensorflow model or ' + \
'a model name to download, but not both at the same ' + \
'time or none at all.'
if args.input:
unpickled = load_tf_models_file(args.input)
else:
assert args.download in pretrained_model_urls.keys(), \
'Unknown model {}. Use --help for list of models.'.format(args.download)
unpickled = load_tf_models_url(pretrained_model_urls[args.download])
if not isinstance(unpickled, (tuple, list)):
unpickled = [unpickled]
print('Converting tensorflow models and saving them...')
converted = [convert_from_tf(tf_state) for tf_state in unpickled]
if len(args.output) == 1 and (os.path.isdir(args.output[0]) or not os.path.splitext(args.output[0])[-1]):
if not os.path.exists(args.output[0]):
os.makedirs(args.output[0])
for tf_state, torch_model in zip(unpickled, converted):
torch_model.save(os.path.join(args.output[0], tf_state['name'] + '.pth'))
else:
assert len(args.output) == len(converted), 'Found {} models '.format(len(converted)) + \
'in pickled file but only {} output paths were given.'.format(len(args.output))
for out_path, torch_model in zip(args.output, converted):
torch_model.save(out_path)
print('Done!')
if __name__ == '__main__':
main()