-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinverse_diff_ff_robot_nengo_ocl.py
953 lines (893 loc) · 56.4 KB
/
inverse_diff_ff_robot_nengo_ocl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
# -*- coding: utf-8 -*-
# (c) Sep 2015 Aditya Gilra, EPFL.
"""
learning of arbitrary feed-forward or recurrent transforms
in Nengo simulator
written by Aditya Gilra (c) Sep 2015.
"""
import nengo
import nengo_ocl
import numpy as np
import input_rec_transform_nengo_plot as myplot
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.interpolate import interp1d
#import pickle
# pickle constructs the object in memory, use shelve for direct to/from disk
import shelve, contextlib
import pandas as pd
from os.path import isfile
import os,sys
########################
### Constants/parameters
########################
###
### Overall parameter control ###
###
OCL = True # use nengo_ocl or nengo to simulate
if OCL: import nengo_ocl
errorLearning = True # error-based PES learning OR algorithmic
recurrentLearning = True # now it's on both, so this is obsolete, leave it True
plastDecoders = False # whether to just have plastic decoders or plastic weights
inhibition = False#True and not plastDecoders # clip ratorOut weights to +ve only and have inh interneurons
learnIfNoInput = False # Learn only when input is off (so learning only on error current)
errorFeedback = True # Forcefeed the error into the network (used only if errorLearning)
learnFunction = True # whether to learn a non-linear function or a linear matrix
#robotType = 'V-REP'
robotType = 'pendulum'
reloadRobotSim = False
trialClamp = False # reset robot and network at the end of each trial during learning (or testing if testLearned)
#funcType = 'robot1_gravity' # if learnFunction, then robot one-link system simulated by V-Rep/pendulum/etc dynamics
#funcType = 'robot1XY_gravity' # if learnFunction, then robot in x-y one-link system simulated by V-Rep/pendulum/etc dynamics
#funcType = 'robot1_gravity_interpol' # if learnFunction, then robot in x-y one-link system simulated by V-Rep/pendulum/etc dynamics
#funcType = 'robot1XY_gravity_interpol' # if learnFunction, then robot in x-y one-link system simulated by V-Rep/pendulum/etc dynamics
#funcType = 'robot2_gravity_interpol' # if learnFunction, then robot in x-y one-link system simulated by V-Rep/pendulum/etc dynamics
#funcType = 'robot2_todorov' # if learnFunction, then robot two-link system simulated by pendulum dynamics
funcType = 'robot2_todorov_gravity' # if learnFunction, then robot two-link system with gravity simulated by pendulum dynamics
#funcType = 'robot2XY_todorov_gravity' # if learnFunction, then robot in x-y two-link system with gravity simulated by pendulum dynamics
#funcType = 'acrobot2_gravity' # if learnFunction, then acrobot two-link system with gravity simulated by pendulum dynamics, clipping on q,dq
#funcType = 'acrobot2XY_gravity' # if learnFunction, then acrobot two-link system with gravity simulated by pendulum dynamics, clipping on q,dq
initLearned = False and recurrentLearning and not inhibition
# whether to start with learned weights (bidirectional/unclipped)
# currently implemented only for recurrent learning
testLearned = False # whether to test the learning, uses weights from continueLearning, but doesn't save again.
testLearnedOn = '_seed2by0.3amplVaryHeights'
#testLearnedOn = '__' # doesn't load any weights if file not found! use with initLearned say.
# the string of inputType and trialClamp used for learning the to-be-tested system
saveSpikes = True # save spikes if testLearned and saveSpikes
continueLearning = False # whether to load old weights and continue learning from there
# doesn't work, maybe save error state, also confirm same encoders/decoders?
# saving weights at the end is always enabled
zeroLowWeights = False # set to zero weights below a certain value
weightErrorCutoff = 0. # Do not pass any abs(error) for weight change below this value
randomInitWeights = False#True and not plastDecoders and not inhibition
# start from random initial weights instead of zeros
# works only for weights, not decoders as decoders are calculated from transform
randomWeightSD = 1e-4 # this is a approx SD of weight distribution (~Gaussian)
# for the LinOsc for min error before error rises
weightRegularize = False # include a weight decay term to regularize weights
###
### Nengo model params ###
###
seedR0 = 2 # seed set while defining the Nengo model
seedR1 = 3 # another seed for the first layer
# some seeds give just flat lines for Lorenz! Why?
seedR2 = 4 # another seed for the second layer
# this is just for reproducibility
# seed for the W file is in rate_evolve.py
# output is very sensitive to this seedR
# as I possibly don't have enough neurons
# to tile the input properly (obsolete -- for high dim)
seedR4 = 5 # for the nengonetexpect layer to generate reference signal
seedRin = 2
np.random.seed([seedRin])# this seed generates the inpfn below (and non-nengo anything random)
tau = 0.02 # second, synaptic tau
tau_AMPA = 1e-3 # second # fast E to I connections
spikingNeurons = False # whether to use Ensemble (LIF neurons) or just Node
# the L2 has to be neurons to apply PES learning rule,
# rest can be Ensemble or Node
if spikingNeurons:
neuronType = nengo.neurons.LIF()
# use LIF neurons for all ensembles
else:
#neuronType = nengo.neurons.LIFRate()
# use LIFRate neurons for all ensembles
# only about 10% faster than LIF for same dt=0.001
# perhaps the plasticity calculations overpower
# gave overflow error in synapses.py for dt = 0.01
neuronType = None # use a Node() instead of Ensemble()
# OOPS! doesn't work as the PES rule only works with neurons
# in any case, non-linear proof only works with large number of neurons
###
### choose dynamics evolution matrix ###
###
#init_vec_idx = -1
init_vec_idx = 0 # first / largest response vector
#evolve = 'EI' # eigenvalue evolution
#evolve = 'Q' # Hennequin et al 2014
evolve = 'fixedW' # fixed W: Schaub et al 2015 / 2D oscillator
#evolve = None # no recurrent connections, W=zeros
evolve_dirn = 'arb' # arbitrary normalized initial direction
#evolve_dirn = '' # along a0, i.e. eigvec of response energy matrix Q
#evolve_dirn = 'eigW' # along eigvec of W
#evolve_dirn = 'schurW' # along schur mode of W
# choose between one of the input types
#inputType = 'inputOsc'
#inputType = 'rampLeave'
#inputType = 'rampLeaveDirnVary'
#inputType = 'kickStart'
#inputType = 'persistent'
#inputType = 'persconst'
#inputType = 'amplVary'
inputType = 'amplVaryHeights'
#inputType = 'amplDurnVary'
#inputType = 'nostim'
#inputType = 'RLSwing'
#inputType = 'RLReach1'
#inputType = 'RLReach2'
#inputType = 'RLReach3'
#inputType = 'ShootWriteF'
filterInp = False
tauFilt = tau
# N is the number of state variables in the system, N//2 is number of inputs
# Nout is the number of observables from the system
if 'robot1_' in funcType:
N = 2
Nobs = 2
if 'robot1XY' in funcType:
N = 2
Nobs = 3
elif 'robot2_' in funcType:
N = 4 # coordinate and velocity (q,p) for each degree of freedom
Nobs = 4
elif 'robot2XY' in funcType: # includes acrobot2XY
N = 4
Nobs = 6 # x1,y1,x2,y2,omega1,omega2
else:
N = 2
Nobs = 2
if robotType == 'V-REP':
torqueFactor = 100. # torqueFactor multiplies inpfn directly which goes to robot and network
angleFactor = 1./np.pi # scales the angle from the robot going into the network
velocityFactor = 1./5. # scales the velocity from the robot going into the network
else:
if funcType == 'robot1_gravity':
varFactors = (0.5,0.1,0.125) # xyFactors, velocityFactors, torqueFactors
#varFactors = (0.15,0.15,0.125) # xyFactors, velocityFactors, torqueFactors
elif funcType == 'robot1XY_gravity':
varFactors = (2.5,2.5,0.05,0.02) # xyFactors, velocityFactors, torqueFactors for 1-link arm with gravity and damping
#varFactors = (2.,2.,0.01,0.075) # xyFactors, velocityFactors, torqueFactors for 1-link arm with gravity (trialClamp = True)
elif funcType == 'robot1_gravity_interpol':
varFactors = (1./3.5,0.05,0.02) # angleFactors, velocityFactors, torqueFactors for 1-link arm with gravity and damping
#varFactors = (2.,2.,0.01,0.075) # xyFactors, velocityFactors, torqueFactors for 1-link arm with gravity (trialClamp = True)
elif funcType == 'robot1XY_gravity_interpol':
varFactors = (2.5,2.5,0.05,0.02) # xyFactors, velocityFactors, torqueFactors for 1-link arm with gravity and damping
#varFactors = (2.,2.,0.01,0.075) # xyFactors, velocityFactors, torqueFactors for 1-link arm with gravity (trialClamp = True)
elif funcType == 'robot2_gravity_interpol':
varFactors = (1./3.5,1./3.5,0.05,0.05,0.02,0.02) # angleFactors, velocityFactors, torqueFactors for 1-link arm with gravity and damping
#varFactors = (2.,2.,0.01,0.075) # xyFactors, velocityFactors, torqueFactors for 1-link arm with gravity (trialClamp = True)
elif funcType == 'robot2_todorov':
varFactors = (1.,1.,0.5,0.5,0.5,0.5) # angleFactors, velocityFactors, torqueFactors
elif funcType == 'robot2_todorov_gravity':
#varFactors = (1./2.5,1./2.5,0.05,0.05,0.1,0.1) # angleFactors, velocityFactors, torqueFactors
######## varFactors to scale all vars to reprRadius=1
varFactors = (1./2.5,1./2.5,0.15,0.15,0.1,0.1) # angleFactors, velocityFactors, torqueFactors
elif funcType == 'robot2XY_todorov_gravity':
#varFactors = (1.,1.,1.,1.,0.15,0.15,0.125,0.125) # xyFactors, velocityFactors, torqueFactors
varFactors = (2.5,2.5,1.2,1.2,0.075,0.075,0.025,0.025) # xyFactors, velocityFactors, torqueFactors
elif funcType == 'acrobot2_gravity':
varFactors = (0.55,0.4,0.12,0.075,0.05,0.05) # angleFactors, velocityFactors, torqueFactors
elif funcType == 'acrobot2XY_gravity':
varFactors = (0.9,0.9,0.45,0.45,0.08,0.05,0.025,0.025) # xyFactors, velocityFactors, torqueFactors
###
### recurrent and feedforward connection matrices ###
###
if errorLearning: # PES plasticity on
Tmax = 10000. # second - how long to run the simulation
continueTmax = 10000. # if continueLearning, then start with weights from continueTmax
reprRadius = 1.0 # neurons represent (-reprRadius,+reprRadius)
reprRadiusIn = 1.0 # input is integrated in ratorOut, so keep it smaller than reprRadius
# with zero bias, at reprRadius, if you want 50Hz, gain=1.685, if 100Hz, gain=3.033, if 400Hz, 40.5
nrngain = 40.5
if recurrentLearning: # L2 recurrent learning
#PES_learning_rate = 9e-1 # learning rate with excPES_integralTau = Tperiod
# # as deltaW actually becomes very small integrated over a cycle!
if testLearned:
PES_learning_rate_rec = 1e-10 # effectively no learning
PES_learning_rate_FF = 1e-10 # effectively no learning
else:
PES_learning_rate_FF = 2e-4
PES_learning_rate_rec = 2e-4 # we don't want such a large learning rate that weights change rapidly within a cycle
# s.t. weight changes cause L2 to follow ref within a cycle, not just error
if 'acrobot' in funcType: inputreduction = 0.5 # input reduction factor
else: inputreduction = 0.3 # input reduction factor
Nexc = 500 # number of excitatory neurons in recurrent layer
Nin = 200 # number of excitatory neurons in input layer
Tperiod = 1. # second
if plastDecoders: # only decoders are plastic
Wdyn2 = np.zeros(shape=(N+N//2,N+N//2))
else: # weights are plastic, connection is now between neurons
if randomInitWeights:
Wdyn2 = np.random.normal(size=(Nexc,Nexc))*randomWeightSD
else:
Wdyn2 = np.zeros(shape=(Nexc,Nexc))
#Wdyn2 = W
#Wdyn2 = W+np.random.randn(2*N,2*N)*np.max(W)/5.
Wtransfer = np.eye(N)
Nerror = 200*N # number of error calculating neurons
reprRadiusErr = 0.2 # with error feedback, error is quite small
###
### time params ###
###
rampT = 0.5 # second
dt = 0.001 # second
weightdt = Tmax/20. # how often to probe/sample weights
Tclamp = 0.25 # time to clamp the ref, learner and inputs after each trial (Tperiod)
Tnolearning = 4*Tperiod
# in last Tnolearning s, turn off learning & weight decay
###
### Generate inputs for L1 ###
###
zerosN = np.zeros(N)
zerosNby2 = np.zeros(N//2)
zeros2N = np.zeros(Nobs+N//2)
if inputType == 'rampLeave':
## ramp input along y0
inpfn = lambda t: tau*B/rampT*reprRadius if (t%Tperiod) < rampT else zerosN
elif inputType == 'rampLeaveDirnVary':
## ramp input along random directions
# generate unit random vectors on the surface of a sphere i.e. random directions
# http://codereview.stackexchange.com/questions/77927/generate-random-unit-vectors-around-circle
# incorrect to select uniformly from theta,phi: http://mathworld.wolfram.com/SpherePointPicking.html
if N//2 > 1: # normalized random directions for >1D
Bt = np.random.normal(size=(N//2,int(Tmax/Tperiod)+1))
# randomly varying vectors for each Tperiod
Bt = 4. * Bt/np.linalg.norm(Bt,axis=0) # multiplied by 2 here after normalizing, later /2 in varFactors
# multi-dimensional Gaussian distribution goes as exp(-r^2)
# so normalizing by r gets rid of r dependence, uniform in theta, phi
# randomly varying vectors for each Tperiod
else:
Bt = 4. * np.random.uniform(-1.,1.,size=(N//2,int(Tmax/Tperiod)+1))
# uniform between (-1,1) for 1D
if trialClamp:
inpfn = lambda t: Bt[:,int(t/Tperiod)] * \
( (2*(t%Tperiod)/rampT)*(t%Tperiod<rampT/2.) + 2*(1 - (t%Tperiod)/rampT)*(t%Tperiod>=rampT/2.) ) * \
(t%Tperiod<rampT) # triangle for rampT and then zero, assuming comparison returns 0 or 1
#inpfn = lambda t: Bt[:,int(t/Tperiod)] * \
# ( (t%Tperiod)/rampT ) * (t%Tperiod<rampT)
# # ramp for rampT and then zero, assuming comparison returns 0 or 1
else:
inpfns = [ interp1d(np.linspace(0,Tmax,int(Tmax/Tperiod)+1),Bt[i,:],axis=0,kind='cubic',\
bounds_error=False,fill_value=0.) for i in range(N//2) ]
inpfn = lambda t: np.array([ inpfns[i](t) for i in range(N//2) ])
# torque should not depend on reprRadius, unlike for other funcType-s.
elif inputType == 'kickStart':
## ramp input along y0 only once initially, for self sustaining func-s
inpfn = lambda t: tau*B/rampT*reprRadius if t < rampT else zerosN
elif inputType == 'persistent':
## decaying ramp input along y0,
inpfn = lambda t: exp(-(t%Tperiod)/Tperiod)*tau*B/rampT*reprRadius \
if (t%(Tperiod/5.)) < rampT else zerosN
# Repeat a ramp 5 times within Tperiod
# with a decaying envelope of time const Tperiod
# This whole sequence is periodic with Tperiod
elif inputType == 'persconst':
## ramp input along y0 with a constant offset at other times
constN = np.ones(N)*tau*3
inpfn = lambda t: tau*B/rampT*reprRadius if (t%Tperiod) < rampT else constN
elif inputType == 'amplVary':
## random uniform 'white-noise'
noiseN = np.random.uniform(-2*reprRadius,2*reprRadius,size=int(1200./rampT))
inpfn = lambda t: (noiseN[int(t/rampT)]*tau*B/rampT)*reprRadius \
if t<(Tmax-Tnolearning) else \
(tau*B/rampT*reprRadius if (t%Tperiod) < rampT else zerosN)
elif inputType == 'amplVaryHeights':
heights = np.random.normal(size=(N//2,int(Tmax/Tperiod)+1))
heights = heights/np.linalg.norm(heights,axis=0)/inputreduction
## random uniform 'white-noise' with 50 ms steps interpolated
## 50ms is longer than spiking-network response-time, and assumed shorter than tau-s of the dynamical system.
noisedt = 50e-3
# cubic interpolation for long sim time takes up ~64GB RAM and then hangs, so linear or nearest interpolation.
noiseN = np.random.uniform(-reprRadius/inputreduction,reprRadius/inputreduction,size=(N//2,int(Tmax/noisedt)+1))
noisefunc = interp1d(np.linspace(0,Tmax,int(Tmax/noisedt)+1),noiseN,kind='linear',\
bounds_error=False,fill_value=np.zeros(N//2),axis=1)
heightsfunc = interp1d(np.linspace(0,Tmax,int(Tmax/Tperiod)+1),heights,kind='linear',\
bounds_error=False,fill_value=np.zeros(N//2),axis=1)
del noiseN
if trialClamp:
#inpfn = lambda t: (noisefunc(t) + heights[:,int(t/Tperiod)]*reprRadius) * ((t%Tperiod)<(Tperiod-Tclamp))
inpfn = lambda t: (noisefunc(t) + heightsfunc(t)*reprRadius) * ((t%Tperiod)<(Tperiod-Tclamp))
else:
#inpfn = lambda t: noisefunc(t) + heights[:,int(t/Tperiod)]*reprRadius
inpfn = lambda t: noisefunc(t) + heightsfunc(t)*reprRadius
elif inputType == 'amplDurnVary':
## random uniform 'white-noise', with duration of each value also random
noiseN = np.random.uniform(-2*reprRadius,2*reprRadius,size=int(1200./rampT))
durationN = np.random.uniform(rampT,Tperiod,size=int(1200./rampT))
cumDurationN = np.cumsum(durationN)
# searchsorted returns the index where t should be placed in sort order
inpfn = lambda t: (noiseN[np.searchsorted(cumDurationN,t)]*tau*B*reprRadius/rampT) \
if t<(Tmax-Tnolearning) else \
(tau*B/rampT*reprRadius if (t%Tperiod) < rampT else zerosN)
elif inputType == 'inputOsc':
## oscillatory input in all input dimensions
omegas = 2*np.pi*np.random.uniform(1,3,size=N) # 1 to 3 Hz
phis = 2*np.pi*np.random.uniform(size=N)
inpfn = lambda t: np.cos(omegas*t+phis)
elif 'RL' in inputType:
## load the input learned via reinforcement learning
import pickle
if 'todorov' in funcType:
bot,animdt = 'arm_2link',0.1
else:
bot,animdt = 'acrobot_2link',0.2
if 'Swing' in inputType: task = 'swing'
elif 'Reach1' in inputType: task = 'reach1'
elif 'Reach2' in inputType: task = 'reach2'
elif 'Reach3' in inputType: task = 'reach3'
timetaken,torqueArray = pickle.load( open( bot+'_'+task+"_data.pickle", "rb" ) )
torqueTmax = 50000. # maximum possible torque length during RL;
# only first few s are valid currently.
inpfn = interp1d(np.arange(0.,torqueTmax,animdt),torqueArray,axis=0,\
bounds_error=False,fill_value=np.zeros(N//2),kind='linear')
elif 'Shoot' in inputType:
## load the input learned via reinforcement learning
import pickle
if 'todorov' in funcType:
bot = 'arm_2link'
else:
bot = 'acrobot_2link'
robotdt = 0.01
if 'WriteF' in inputType: task = 'write_f'
robotdts,torqueArray = pickle.load( open( bot+'_'+task+"_data.pickle", "rb" ) )
torqueTmax = 50000. # maximum possible torque length during RL;
# only first few s are valid currently.
inpfn = interp1d(np.arange(0.,torqueTmax,robotdt),torqueArray,axis=0,\
bounds_error=False,fill_value=np.zeros(N//2),kind='nearest')
else:
inpfn = lambda t: 0.0*np.ones(N)*reprRadius*tau # constant input, currently zero
#inpfn = None # zero input
# any of the above inputTypes may be filtered
if filterInp:
trange = np.arange(0.,Tmax,dt)
inpfnarray = np.array([inpfn(t) for t in trange])
expfilt = np.exp(-np.arange(0,tauFilt*100,dt)/tauFilt) # exp. decaying kernel
expfilt = expfilt/np.sum(expfilt)/dt # very important to numerically normalize, than the analytical /tau
inpfnfiltarray = np.zeros((len(trange),N//2))
for i in range(N//2):
inpfnfiltarray[:,i] = np.convolve(inpfnarray[:,i],expfilt)[:len(trange)]*dt
inpfn = interp1d(trange,inpfnfiltarray,axis=0,
bounds_error=False,fill_value=np.zeros(N//2),kind='linear')
print('Filtering complete.')
if errorLearning:
if not weightRegularize:
excPES_weightsDecayRate = 0. # no decay of PES plastic weights
else:
excPES_weightsDecayRate = 1./1e4 # 1/tau of synaptic weight decay for PES plasticity
#if excPES_weightsDecayRate != 0.: PES_learning_rate /= excPES_weightsDecayRate
# no need to correct PES_learning_rate,
# it's fine in ElementwiseInc in builders/operator.py
#excPES_integralTau = 1. # tau of integration of deltaW for PES plasticity
excPES_integralTau = None # don't integrate deltaW for PES plasticity (default)
copycatLayer = False # whether to use odeint rate_evolve or another copycat layer
# for generating the expected response signal for error computation
errorAverage = False # whether to average error over the Tperiod scale
# Nopes, this won't make it learn the intricate dynamics
#tauErrInt = tau*5 # longer integration tau for err -- obsolete (commented below)
errorFeedbackGain = 10. # Feedback gain
# below a gain of ~5, exc rates go to max, weights become large
weightErrorTau = 10*tau # filter the error to the PES weight update rule
errorFeedbackTau = 1*tau # synaptic tau for the error signal into layer2.ratorOut
errorGainDecay = False # whether errorFeedbackGain should decay exponentially to zero
# decaying gain gives large weights increase below some critical gain ~3
errorGainDecayRate = 1./200. # 1/tau for decay of errorFeedbackGain if errorGainDecay is True
errorGainProportion = False # scale gain proportionally to a long-time averaged |error|
errorGainProportionTau = Tperiod # time scale to average error for calculating feedback gain
if errorLearning and recurrentLearning:
inhVSG_weightsDecayRate = 1./40.
else:
inhVSG_weightsDecayRate = 1./2. # 1/tau of synaptic weight decay for VSG plasticity
#inhVSG_weightsDecayRate = 0. # no decay of inh VSG plastic weights
#pathprefix = '/lcncluster/gilra/tmp/'
pathprefix = '../data/'
inputStr = ('_trials' if trialClamp else '') + \
('_seed'+str(seedRin)+'by'+str(inputreduction)+\
(inputType if inputType != 'rampLeave' else ''))
baseFileName = pathprefix+'inverse_diff_ff_S2_d50c50_N'+str(Nin)+('_ocl' if OCL else '')+'_Nexc'+str(Nexc) + \
'_norefinptau_seeds'+str(seedR0)+str(seedR1)+str(seedR2)+str(seedR4) + \
('_filt'+str(tauFilt) if filterInp else '') + \
('_inhibition' if inhibition else '') + \
('_zeroLowWeights' if zeroLowWeights else '') + \
'_weightErrorCutoff'+str(weightErrorCutoff) + \
('_randomInitWeights'+str(randomWeightSD) if randomInitWeights else '') + \
('_weightRegularize'+str(excPES_weightsDecayRate) if weightRegularize else '') + \
'_nodeerr' + ('_plastDecoders' if plastDecoders else '') + \
( ( '_learn' + \
('_rec' if recurrentLearning else '_ff') + \
('' if errorFeedback else '_noErrFB') \
) if errorLearning else '_algo' ) + \
('_initLearned' if initLearned else '') + \
('_learnIfNoInput' if learnIfNoInput else '') + \
('' if copycatLayer else '_nocopycat') + \
('_func_'+funcType if learnFunction else '') + \
(testLearnedOn if (testLearned or continueLearning) else inputStr)
# filename to save simulation data
dataFileName = baseFileName + \
('_continueFrom'+str(continueTmax)+inputStr if continueLearning else '') + \
('_testFrom'+str(continueTmax)+inputStr if testLearned else '') + \
'_'+str(Tmax)+'s'
print('data will be saved to', dataFileName, '_<start|end|currentweights>.shelve')
if continueLearning or testLearned:
weightsSaveFileName = baseFileName + '_'+str(continueTmax+Tmax)+'s_endweights.shelve'
weightsLoadFileName = baseFileName + '_'+str(continueTmax)+'s_endweights.shelve'
else:
weightsSaveFileName = baseFileName + '_'+str(Tmax)+'s_endweights.shelve'
weightsLoadFileName = baseFileName + '_'+str(Tmax)+'s_endweights.shelve'
###
### Get data from the vrep robotics simulation server, or reload older sim data
###
robDataFileName = pathprefix+'general_learn_data' + \
'_trials_seeds'+str(seedR0)+str(seedR1)+str(seedR2)+str(seedR4) + \
('_func_'+funcType if learnFunction else '') + \
'_'+str(Tmax)+'s' + \
('_by'+str(inputreduction)+inputType if inputType != 'rampLeave' else '')
# filename to save vrep robot simulation data
print('robot sim will be saved to',robDataFileName)
#plt.figure()
#trange = np.arange(0,Tmax,dt)
#plt.plot(trange,[inpfn(t) for t in trange])
#plt.show()
#sys.exit()
from sim_robot import sim_robot
robtrange,rateEvolveProbe,evolveFns,armAngles = \
sim_robot(robotType,funcType,reloadRobotSim,robDataFileName,Tmax,inpfn,trialClamp,Tperiod,Tclamp,dt)
if initLearned:
if 'XY' in funcType: XY = True
else: XY = False
def Wdesired(x):
''' x is the augmented variable represented in the network
it obeys \tau_s x_\alpha = -x_\alpha + Wdesired_\alpha(x)
x is related to the original augmented variable \tilde{x} by x_\alpha = varFactors_\alpha \tilde{x}_\alpha
where varFactors_alpha = angleFactor | velocityFactor | torqueFactor
now, original augmented variable obeys \dot{\tilde{x}}=f(\tilde{x})
so, we have Wdesired_\alpha(x) = \tau_s * varFactor_alpha * f_\alpha(\tilde{x}) + x
'''
# \tilde{x} (two zeroes at x[N:N+N//2] are ignored
xtilde = x/varFactors
if XY: angles = armAngles(xtilde[:N])
else: angles = xtilde[:N//2]
# f(\tilde{x}), \dot{u} part is not needed
qdot,dqdot = evolveFns(angles,xtilde[Nobs-N//2:Nobs],xtilde[Nobs:],XY,dt)
# returns deltaposn if XY else deltaangles
# \tau_s * varFactors_alpha * f_\alpha(\tilde{x}) + x
return np.append(np.append(qdot,dqdot),np.zeros(N//2))*varFactors*tau + x
# integral on torque u also
# VERY IMP to compensate for synaptic decay on torque
#return np.append( np.append(qdot,dqdot)*tau*varFactors[:Nobs] + x[:Nobs], np.zeros(N//2) )
# normal synaptic decay on torque u
##### For the reference, choose EITHER robot simulation rateEvolveProbe above
##### OR evolve Wdesired inverted / evolveFns using odeint as below -- both should be exactly same
def matevolve2(y,t):
''' the reference y is only N-dim i.e. (q,dq), not 2N-dim, as inpfn is used directly as reference for torque u
'''
## invert the nengo function transformation with angleFactor, tau, +x, etc. in Wdesired()
## -- some BUG, inversion is not working correctly
#xfull = np.append(y,inpfn(t))*varFactors
#return ( (Wdesired(xfull)[:N]/tau/varFactors[:N] - xfull[:N]) \
# if (t%Tperiod)<(Tperiod-Tclamp) else -x/tau )
# instead of above, directly use evolveFns()
######### DOESN'T WORK: should only use armAngles() with valid posn, not all posn-s are valid for an arm!!! ###########
if XY: angles = armAngles(y[:N])
else: angles = y[:N//2]
# evolveFns returns deltaposn if XY else deltaangles
if trialClamp:
return ( evolveFns( angles, y[Nobs-N//2:Nobs], inpfn(t), XY, dt).flatten()\
if (t%Tperiod)<(Tperiod-Tclamp) else -y/dt )
else:
return evolveFns( angles, y[Nobs-N//2:Nobs], inpfn(t), XY, dt).flatten()
##### uncomment below to override rateEvolveProbe by matevolve2-computed Wdesired-inversion / evolveFns-evolution, as reference signal
#trange = np.arange(0.0,Tmax,dt)
#y = odeint(matevolve2,0.001*np.ones(N),trange,hmax=dt) # set hmax=dt, to avoid adaptive step size
# # some systems (van der pol) have origin as a fixed pt
# # hence start just off-origin
#rateEvolveProbe = y # only copies pointer, not full array (no need to use np.copy() here)
###
### Reference evolution used when copycat layer is not used for reference ###
###
# scale the output of the robot simulation or odeint to cover the representation range of the network
# here I scale by angle/velocity factors, below at nodeIn I scale by torque factors.
rateEvolveProbe *= varFactors[:Nobs]
rateEvolveFn = interp1d(robtrange,rateEvolveProbe,axis=0,kind='linear',\
bounds_error=False,fill_value=np.zeros(Nobs))
# used for the error signal below
## this color cycle doesn't seem to work!?
##plt.gca().set_color_cycle(['red', 'green', 'blue', 'cyan','magenta','yellow','black'])
#plt.figure(facecolor='w')
#plt.plot(robtrange,rateEvolveProbe[:,0],label='$\\theta_0$')
#plt.plot(robtrange,rateEvolveProbe[:,1],label='$\\theta_1$')
#plt.plot(robtrange,rateEvolveProbe[:,2],label='$\omega_0$')
#plt.plot(robtrange,rateEvolveProbe[:,3],label='$\omega_1$')
#plt.legend()
#plt.show()
#sys.exit()
del robtrange,rateEvolveProbe # free some memory
if __name__ == "__main__":
#########################
### Create Nengo network
#########################
print('building model')
mainModel = nengo.Network(label="Single layer network", seed=seedR0)
with mainModel:
rateEvolve = nengo.Node(rateEvolveFn) # reference state evolution
rateEvolveD = nengo.Node(lambda t: rateEvolveFn(t-0.05))# delayed reference state evolution
nodeIn = nengo.Node( size_in=N//2, output = lambda timeval,currval: inpfn(timeval-0.05)*varFactors[Nobs:] )
# reference input torque evolution
# scale input to network by torque factors
# input layer from which feedforward weights to ratorOut are computed
ratorIn = nengo.Ensemble( Nin, dimensions=Nobs, radius=reprRadiusIn,
bias=nengo.dists.Uniform(1-nrngain,1+nrngain), gain=np.ones(Nin)*nrngain,
neuron_type=nengo.neurons.LIF(), seed=seedR1, label='ratorIn' )
ratorInD = nengo.Ensemble( Nin, dimensions=Nobs, radius=reprRadiusIn,
bias=nengo.dists.Uniform(1-nrngain,1+nrngain), gain=np.ones(Nin)*nrngain,
neuron_type=nengo.neurons.LIF(), seed=seedR1, label='ratorIn' )
nengo.Connection(rateEvolve, ratorIn, synapse=None)
nengo.Connection(rateEvolveD, ratorInD, synapse=None)
# No filtering here as no filtering/delay in the plant/arm
# layer with learning incorporated
#intercepts = np.append(np.random.uniform(-0.2,0.2,size=Nexc//2),np.random.uniform(-1.,1.,size=Nexc//2))
ratorOut = nengo.Ensemble( Nexc, dimensions=N//2, radius=reprRadius,
bias=nengo.dists.Uniform(1-nrngain,1+nrngain), gain=np.ones(Nexc)*nrngain,
neuron_type=nengo.neurons.LIF(), seed=seedR2, label='ratorOut')
# don't use the same seeds across the connections,
# else they seem to be all evaluated at the same values of low-dim variables
# causing seed-dependent convergence issues possibly due to similar frozen noise across connections
if trialClamp:
# clamp ratorOut at the end of each trial (Tperiod) for 100ms.
# Error clamped below during end of the trial for 100ms.
clampValsZeros = np.zeros(Nexc)
clampValsNegs = -100.*np.ones(Nexc)
endTrialClamp = nengo.Node(lambda t: clampValsZeros if (t%Tperiod)<(Tperiod-Tclamp) else clampValsNegs)
nengo.Connection(endTrialClamp,ratorOut.neurons,synapse=1e-3)
# fast synapse for fast-reacting clamp
EtoE = nengo.Connection(ratorInD.neurons, ratorOut.neurons,
transform=np.zeros((Nexc,Nin)), synapse=tau) # synapse is tau_syn for filtering
# make InEtoE connection after EtoE, so that reprRadius from EtoE
# instead of reprRadiusIn from InEtoE is used to compute decoders for ratorOut
InEtoE = nengo.Connection(ratorIn.neurons, ratorOut.neurons,
transform=np.zeros((Nexc,Nin)), synapse=tau)
# Wdyn2 same as for EtoE, but mean(InEtoE) = mean(EtoE)/20
nodeIn_probe = nengo.Probe(nodeIn, synapse=None)
if testLearned and saveSpikes:
ratorOut_EspikesOut = nengo.Probe(ratorOut.neurons, 'output')
# this becomes too big for shelve (ndarray.dump())
# for my Lorenz _end simulation of 100s
# gives SystemError: error return without exception set
# use python3.3+ or break into smaller sizes
# even with python3.4, TypeError: gdbm mappings have byte or string elements only
############################
### Learn ratorOut EtoE connection
############################
with mainModel:
if errorLearning:
###
### error ensemble, could be with error averaging, gets post connection ###
###
if spikingNeurons:
error = nengo.Ensemble(Nerror, dimensions=N, radius=reprRadiusErr)
else:
error = nengo.Node( size_in=N//2, output = lambda timeval,err: err )
if trialClamp:
errorOff = nengo.Node( size_in=N//2, output = lambda timeval,err: \
(err if timeval<(Tmax-Tnolearning) else zerosNby2) \
if ((timeval%Tperiod)<Tperiod-Tclamp and (timeval>Tperiod)) \
else zerosNby2 )
else:
errorOff = nengo.Node( size_in=N//2, output = lambda timeval,err: \
(err if (timeval<(Tmax-Tnolearning) and (timeval>Tperiod)) \
else zerosNby2) )
error2errorOff = nengo.Connection(error,errorOff,synapse=None)
if errorAverage: # average the error over Tperiod time scale
errorT = np.eye(Nobs)*(1-tau/Tperiod*dt/Tperiod)# neuralT' = tau*dynT + I
# dynT=-1/Tperiod*dt/Tperiod
# *dt/Tperiod converts integral to mean
nengo.Connection(errorOff,errorOff,transform=errorT,synapse=tau)
# Error = post - pre * desired_transform
ratorOut2error = nengo.Connection(ratorOut,error,synapse=tau)
# post input to error ensemble (pre below)
# important to probe only ratorOut2error as output, and not directly ratorOut, to accommodate randomDecodersType != ''
# 'output' reads out the output of the connection in nengo 2.2
ratorOut_probe = nengo.Probe(ratorOut2error, 'output')
if trialClamp:
###
### clamp error neurons to zero firing during end probe, for ff and rec learning ###
###
# no need to clamp error during ramp, as expected signal is accurate during ramp too
# clamp error neurons to zero for the last 2 Tperiods to check generation
# by injecting strong negative input to error neurons
if spikingNeurons:
clampValsZeros = np.zeros(Nerror)
clampValsNegs = -100.*np.ones(Nerror)
rampClamp = lambda t: clampValsZeros if t<(Tmax-Tnolearning) else clampValsNegs
errorClamp = nengo.Node(rampClamp)
nengo.Connection(errorClamp,error.neurons,synapse=1e-3)
# fast synapse for fast-reacting clamp
###
### Add the relevant pre signal to the error ensemble ###
###
if recurrentLearning: # L2 rec learning
# Error = post - desired_output
inpfn2error = nengo.Connection(nodeIn,error,synapse=None,transform=-np.eye(N//2))
# - desired output (post above)
plasticConnEE = EtoE
rateEvolve_probe = nengo.Probe(inpfn2error, 'output')
###
### Add the exc learning rules to the connection, and the error ensemble to the learning rule ###
###
EtoERulesDict = { 'PES' : nengo.PES(learning_rate=PES_learning_rate_rec,
pre_tau=tau) }#,
#clipType=excClipType,
#decay_rate_x_dt=excPES_weightsDecayRate*dt,
#integral_tau=excPES_integralTau) }
plasticConnEE.learning_rule_type = EtoERulesDict
#plasticConnEE.learning_rule['PES'].learning_rate=0
# learning_rate has no effect
# set to zero, yet works fine!
# It works only if you set it
# in the constructor PES() above
# feedforward learning rule
InEtoERulesDict = { 'PES' : nengo.PES(learning_rate=PES_learning_rate_FF,
pre_tau=tau) }#,
#clipType=excClipType,
#decay_rate_x_dt=excPES_weightsDecayRate*dt,
#integral_tau=excPES_integralTau) }
InEtoE.learning_rule_type = InEtoERulesDict
if trialClamp:
# if trialClamp just forcing error to zero doesn't help, as errorWt decays at long errorWeightTau,
# so force errorWt also to zero, so that learning is shutoff at the end of a trial
errorWt = nengo.Node( size_in=N//2, output = lambda timeval,errWt: \
errWt if ((timeval%Tperiod)<Tperiod-Tclamp and timeval<Tmax-Tnolearning) \
else zerosNby2 )
# To Do: implement weightErrorCutoff only on errWt[0:N] above
else:
errorWt = nengo.Node( size_in=N//2, output = lambda timeval,errWt: \
errWt*(np.abs(errWt)>weightErrorCutoff) if timeval<Tmax-Tnolearning \
else zerosNby2 )
nengo.Connection(errorOff,errorWt,synapse=weightErrorTau)
# error to errorWt ensemble, filter for weight learning
# rest of errorWt beyond Nobs will be zero by default (no connection)
error_conn = nengo.Connection(\
errorWt,plasticConnEE.learning_rule['PES'],synapse=dt)
error_conn = nengo.Connection(\
errorWt,InEtoE.learning_rule['PES'],synapse=dt)
###
### feed the error back to force output to follow the input (for both recurrent and feedforward learning) ###
###
if errorFeedback and not testLearned:
#np.random.seed(1)
if not errorGainProportion: # default error feedback
errorFeedbackConn = nengo.Connection(errorOff,ratorOut,\
synapse=errorFeedbackTau,\
transform=-errorFeedbackGain)#*(np.random.uniform(-0.1,0.1,size=(N,N))+np.eye(N)))
else:
# obsolete
## calculate the gain from the filtered mean(abs(error))
#autoGainControl = nengo.Node(size_in=1,size_out=1,\
# output = lambda timeval,abserr_filt: \
# -errorFeedbackGain*abserr_filt\
# /errorGainProportionTau/reprRadiusErr)
#nengo.Connection(error,autoGainControl,synapse=errorGainProportionTau,\
# function = lambda err: np.mean(np.abs(err)))
# instead of the above gain[err(t)], I just have gain(t)
autoGainControl = nengo.Node(size_in=1,size_out=1,\
output = lambda timeval,x: \
-errorFeedbackGain*(2.*Tmax-timeval)/2./Tmax)
# multiply error with this calculated gain
errorGain = nengo.Node(size_in=N+1,size_out=N,
output = lambda timeval,x: x[:N]*x[-1])
nengo.Connection(errorOff,errorGain[:N],synapse=0.001)
nengo.Connection(autoGainControl,errorGain[-1],synapse=0.001)
# feedback the error multiplied by the calculated gain
errorFeedbackConn = nengo.Connection(\
errorGain,ratorOut,synapse=errorFeedbackTau)
if errorGainDecay and spikingNeurons: # decaying gain, works only if error is computed from spiking neurons
errorFeedbackConn.learning_rule_type = \
{'wtDecayRule':nengo.PES(decay_rate_x_dt=errorGainDecayRate*dt)}
# PES with error unconnected, so only decay
###
### error and weight probes ###
###
errorOn_p = nengo.Probe(error, synapse=None, label='errorOn')
error_p = nengo.Probe(errorWt, synapse=None, label='error')
if not OCL and Nexc<=4000: # GPU mem is not large enough to probe large weight matrices
#learnedInWeightsProbe = nengo.Probe(\
# InEtoE,'weights',sample_every=weightdt,label='InEEweights')
learnedWeightsProbe = nengo.Probe(\
plasticConnEE,'weights',sample_every=weightdt,label='EEweights')
#################################
### Build Nengo network
#################################
if OCL:
sim = nengo_ocl.Simulator(mainModel,dt)
else:
sim = nengo.Simulator(mainModel,dt)
Eencoders = sim.data[ratorOut].encoders
#################################
### load previously learned weights, if requested and file exists
#################################
if errorLearning and (continueLearning or testLearned) and isfile(weightsLoadFileName):
print('loading previously learned weights from',weightsLoadFileName)
with contextlib.closing(
shelve.open(weightsLoadFileName, 'r', protocol=-1)
) as weights_dict:
#sim.data[plasticConnEE].weights = weights_dict['learnedWeights'] # can't be set, only read
sim.signals[ sim.model.sig[plasticConnEE]['weights'] ] \
= weights_dict['learnedWeights'] # can be set if weights/decoders are plastic
sim.signals[ sim.model.sig[InEtoE]['weights'] ] \
= weights_dict['learnedInWeights'] # can be set if weights/decoders are plastic
else:
print('Not loading any pre-learned weights.')
def save_data(endTag):
#print 'pickling data'
#pickle.dump( data_dict, open( "/lcncluster/gilra/tmp/rec_learn_data.pickle", "wb" ) )
print('shelving data',endTag)
# with statement causes close() at the end, else must call close() explictly
# 'c' opens for read and write, creating it if not existing
# protocol = -1 uses the highest protocol (currently 2) which is binary,
# default protocol=0 is ascii and gives `ValueError: insecure string pickle` on loading
with contextlib.closing(
shelve.open(dataFileName+endTag+'.shelve', 'c', protocol=-1)
) as data_dict:
data_dict['trange'] = sim.trange()
data_dict['Tmax'] = Tmax
data_dict['rampT'] = rampT
data_dict['Tperiod'] = Tperiod
data_dict['dt'] = dt
data_dict['tau'] = tau
data_dict['ratorOut'] = sim.data[nodeIn_probe]
data_dict['ratorOut2'] = sim.data[ratorOut_probe]
data_dict['errorLearning'] = errorLearning
data_dict['spikingNeurons'] = spikingNeurons
data_dict['varFactors'] = varFactors
if testLearned and saveSpikes:
data_dict['EspikesOut2'] = sim.data[ratorOut_EspikesOut]
if spikingNeurons:
data_dict['EVmOut'] = sim.data[EVmOut]
data_dict['EIn'] = sim.data[EIn]
data_dict['EOut'] = sim.data[EOut]
data_dict['rateEvolve'] = rateEvolveFn(sim.trange())
if errorLearning:
data_dict['recurrentLearning'] = recurrentLearning
data_dict['error'] = sim.data[errorOn_p]
data_dict['error_p'] = sim.data[error_p]
#data_dict['learnedExcOut'] = sim.data[learnedExcOutProbe],
#data_dict['learnedInhOut'] = sim.data[learnedInhOutProbe],
data_dict['copycatLayer'] = copycatLayer
if recurrentLearning:
data_dict['rateEvolveFiltered'] = sim.data[rateEvolve_probe]
if copycatLayer:
data_dict['yExpectRatorOut'] = sim.data[expectOut_probe]
def save_weights_evolution():
if Nexc>4000 or OCL: return # GPU runs are unable to probe large weight matrices
print('shelving weights evolution')
# with statement causes close() at the end, else must call close() explictly
# 'c' opens for read and write, creating it if not existing
# protocol = -1 uses the highest protocol (currently 2) which is binary,
# default protocol=0 is ascii and gives `ValueError: insecure string pickle` on loading
with contextlib.closing(
shelve.open(dataFileName+'_weights.shelve', 'c', protocol=-1)
) as data_dict:
data_dict['Tmax'] = Tmax
data_dict['errorLearning'] = errorLearning
if errorLearning:
data_dict['recurrentLearning'] = recurrentLearning
data_dict['learnedWeights'] = sim.data[learnedWeightsProbe]
data_dict['learnedInWeights'] = sim.data[learnedInWeightsProbe]
data_dict['copycatLayer'] = copycatLayer
#if recurrentLearning and copycatLayer:
# data_dict['copycatWeights'] = EtoEweights
# data_dict['copycatWeightsPert'] = EtoEweightsPert
def save_current_weights(init,t):
if Nexc>4000 or OCL: return # GPU runs are unable to probe large weight matrices
if errorLearning:
with contextlib.closing(
# 'c' opens for read/write, creating if non-existent
# using pandas instead of shelve here,
# as shelve length overflows 32-bit integer, and gives negative error
pd.HDFStore(dataFileName+'_currentweights.h5')
) as data_dict:
if init:
# data_dict in older file may have data, reassigned here
if plastDecoders:
data_dict['weights'] = pd.Panel(np.array([sim.data[EtoE].weights]))
data_dict['encoders'] = pd.DataFrame(Eencoders)
data_dict['reprRadius'] = pd.Series(ratorOut.radius)
data_dict['gain'] = pd.Series(sim.data[ratorOut].gain)
else:
data_dict['weights'] = pd.Panel(np.array([sim.data[EtoE].weights]))
data_dict['weightdt'] = pd.Series(weightdt)
data_dict['Tmax'] = pd.Series(Tmax)
else:
if len(sim.data[learnedWeightsProbe]) > 0:
wts = data_dict['weights']
#wts = np.append(wts,sim.data[learnedWeightsProbe],axis=0)
# concat the two Panels along the time axis, ignoring previous indices and recreating new ones
wts = pd.concat([wts,pd.Panel(sim.data[learnedWeightsProbe])],axis=0,ignore_index=True)
# cannot append on disk except to a table as per:
# http://stackoverflow.com/questions/16637271/iteratively-writing-to-hdf5-stores-in-pandas
# so delete on disk and then re-add 'weights' entry
del data_dict['weights']
data_dict['weights'] = wts
# flush the probe to save memory
del sim._probe_outputs[learnedWeightsProbe][:]
_,_,_,_,realtimeold = os.times()
def sim_run_flush(tFlush,nFlush):
'''
Run simulation for nFlush*tFlush seconds,
Flush probes every tFlush of simulation time,
(only flush those that don't have 'weights' in their label names)
'''
weighttimeidxold = 0
#doubledLearningRate = False
for duration in [tFlush]*nFlush:
_,_,_,_,realtime = os.times()
print("Finished till",sim.time,'s, in',realtime-realtimeold,'s')
sys.stdout.flush()
# save weights if weightdt or more has passed since last save
weighttimeidx = int(sim.time/weightdt)
if weighttimeidx > weighttimeidxold:
weighttimeidxold = weighttimeidx
save_current_weights(False,sim.time)
# flush probes
for probe in sim.model.probes:
# except weight probes (flushed in save_current_weights)
# except error probe which is saved fully in ..._end.shelve
if probe.label is not None:
if 'weights' in probe.label or 'error' in probe.label:
break
del sim._probe_outputs[probe][:]
## if time > 1000s, double learning rate
#if sim.time>1000. and not doubledLearningRate:
# changeLearningRate(4.) # works only if excPESDecayRate = None
# doubledLearningRate = True
# run simulation for tFlush duration
sim.run(duration,progress_bar=False)
###
### run the simulation, with flushing for learning simulations ###
###
if errorLearning:
save_current_weights(True,0.)
sim.run(Tnolearning)
save_data('_start')
nFlush = int((Tmax-2*Tnolearning)/Tperiod)
sim_run_flush(Tperiod,nFlush) # last Tperiod remains (not flushed)
# turning learning off by modifying weight decay in some op-s is not needed
# (haven't checked if it can be done in nengo_ocl like I did in nengo)
# I'm already setting error node to zero! If error was a spiking ensemble,
# I'd have problems with spiking noise causing some 'learning', but with a node, it's fine!
#turn_off_learning()
save_current_weights(False,sim.time)
sim.run(Tnolearning)
save_current_weights(False,sim.time)
save_data('_end')
else:
sim.run(Tmax)
save_data('')
#save_weights_evolution()
###
### save the final learned exc weights ###
###
if errorLearning and not testLearned:
with contextlib.closing(
shelve.open(weightsSaveFileName, 'c', protocol=-1)
) as weights_dict:
#weights_dict['learnedWeights'] = sim.data[plasticConnEE].weights
# this only saves the initial weights
weights_dict['learnedInWeights'] = sim.signals[ sim.model.sig[InEtoE]['weights'] ]
weights_dict['learnedWeights'] = sim.signals[ sim.model.sig[plasticConnEE]['weights'] ]
# this is the signal updated by operator-s set by the learning rule
print('saved end weights to',weightsSaveFileName)
###
### run the plotting sequence ###
###
print('plotting data')
myplot.plot_rec_nengo_all(dataFileName)