-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmain.py
89 lines (60 loc) · 2.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from __future__ import print_function
import matplotlib; matplotlib.use('Agg')
import os
import os.path as osp
import argparse
from train import train
from test import test
from test_beam import test_beam
parser = argparse.ArgumentParser(description='PyTorch Convolutional Image Captioning Model')
parser.add_argument('model_dir', help='output directory to save models & results')
parser.add_argument('-g', '--gpu', type=int, default=0,\
help='gpu device id')
parser.add_argument('--coco_root', type=str, default= './data/coco/',\
help='directory containing coco dataset train2014, val2014, & annotations')
parser.add_argument('-t', '--is_train', type=int, default=1,\
help='use 1 to train model')
parser.add_argument('-e', '--epochs', type=int, default=30,\
help='number of training epochs')
parser.add_argument('-b', '--batchsize', type=int, default=20,\
help='number of images per training batch')
parser.add_argument('-c', '--ncap_per_img', type=int, default=5,\
help='ground-truth captions per image in training batch')
parser.add_argument('-n', '--num_layers', type=int, default=3,\
help='depth of convcap network')
parser.add_argument('-m', '--nthreads', type=int, default=4,\
help='pytorch data loader threads')
parser.add_argument('-ft', '--finetune_after', type=int, default=8,\
help='epochs after which vgg16 is fine-tuned')
parser.add_argument('-lr', '--learning_rate', type=float, default=5e-5,\
help='learning rate for convcap')
parser.add_argument('-st', '--lr_step_size', type=int, default=15,\
help='epochs to decay learning rate after')
parser.add_argument('-sc', '--score_select', type=str, default='CIDEr',\
help='metric to pick best model')
parser.add_argument('--beam_size', type=int, default=1, \
help='beam size to use for test')
parser.add_argument('--attention', dest='attention', action='store_true', \
help='Use this for convcap with attention (by default set)')
parser.add_argument('--no-attention', dest='attention', action='store_false', \
help='Use this for convcap without attention')
parser.set_defaults(attention=True)
args = parser.parse_args()
def main():
"""Train model and run inference on coco test set to output metrics"""
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
if(args.is_train == 1):
train(args)
bestmodelfn = osp.join(args.model_dir, 'bestmodel.pth')
if(osp.exists(bestmodelfn)):
if(args.beam_size == 1):
scores = test(args, 'test', modelfn=bestmodelfn)
else:
scores = test_beam(args, 'test', modelfn=bestmodelfn)
print('TEST set scores')
for k, v in scores[0].iteritems():
print('%s: %f' % (k, v))
else:
raise Exception('No checkpoint found %s' % bestmodelfn)
if __name__ == '__main__':
main()