-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathadafruit_bitbangio.py
563 lines (484 loc) · 19.3 KB
/
adafruit_bitbangio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# SPDX-FileCopyrightText: 2020 Melissa LeBlanc-Williams for Adafruit Industries
#
# SPDX-License-Identifier: MIT
"""
`adafruit_bitbangio`
================================================================================
A library for adding bitbang I2C and SPI to CircuitPython without the built-in bitbangio module.
The interface is intended to be the same as bitbangio and therefore there is no bit order or chip
select functionality. If your board supports bitbangio, it is recommended to use that instead
as the timing should be more reliable.
* Author(s): Melissa LeBlanc-Williams
Implementation Notes
--------------------
**Software and Dependencies:**
* Adafruit CircuitPython firmware for the supported boards:
https://github.com/adafruit/circuitpython/releases
"""
try:
from typing import List, Optional, Type
from typing_extensions import Literal
from types import TracebackType
from circuitpython_typing import WriteableBuffer, ReadableBuffer
from microcontroller import Pin
except ImportError:
pass
# imports
from time import monotonic
from digitalio import DigitalInOut
__version__ = "0.0.0+auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_BitbangIO.git"
MSBFIRST = 0
LSBFIRST = 1
class _BitBangIO:
"""Base class for subclassing only"""
def __init__(self) -> None:
self._locked = False
def try_lock(self) -> bool:
"""Attempt to grab the lock. Return True on success, False if the lock is already taken."""
if self._locked:
return False
self._locked = True
return True
def unlock(self) -> None:
"""Release the lock so others may use the resource."""
if self._locked:
self._locked = False
else:
raise ValueError("Not locked")
def _check_lock(self) -> Literal[True]:
if not self._locked:
raise RuntimeError("First call try_lock()")
return True
def __enter__(self) -> "_BitBangIO":
return self
def __exit__(
self,
exc_type: Optional[Type[BaseException]],
exc_value: Optional[BaseException],
traceback: Optional[TracebackType],
) -> None:
self.deinit()
# pylint: disable=no-self-use
def deinit(self) -> None:
"""Free any hardware used by the object."""
return
# pylint: enable=no-self-use
class I2C(_BitBangIO):
"""Software-based implementation of the I2C protocol over GPIO pins."""
def __init__(
self, scl: Pin, sda: Pin, *, frequency: int = 400000, timeout: float = 1
) -> None:
"""Initialize bitbang (or software) based I2C. Must provide the I2C
clock, and data pin numbers.
"""
super().__init__()
# Set pins as outputs/inputs.
self._scl = DigitalInOut(scl)
# rpi gpio does not support OPEN_DRAIN, so we have to emulate it
# by setting the pin to input for high and output 0 for low
self._scl.switch_to_input()
# SDA flips between being input and output
self._sda = DigitalInOut(sda)
self._sda.switch_to_input()
self._delay = (1 / frequency) / 2 # half period
self._timeout = timeout
def deinit(self) -> None:
"""Free any hardware used by the object."""
self._sda.deinit()
self._scl.deinit()
def _wait(self) -> None:
end = monotonic() + self._delay # half period
while end > monotonic():
pass
def scan(self) -> List[int]:
"""Perform an I2C Device Scan"""
found = []
if self._check_lock():
for address in range(0, 0x80):
if self._probe(address):
found.append(address)
return found
def writeto(
self,
address: int,
buffer: ReadableBuffer,
*,
start: int = 0,
end: Optional[int] = None,
) -> None:
"""Write data from the buffer to an address"""
if end is None:
end = len(buffer)
if self._check_lock():
self._write(address, buffer[start:end], True)
def readfrom_into(
self,
address: int,
buffer: WriteableBuffer,
*,
start: int = 0,
end: Optional[int] = None,
) -> None:
"""Read data from an address and into the buffer"""
if end is None:
end = len(buffer)
if self._check_lock():
readin = self._read(address, end - start)
for i in range(end - start):
buffer[i + start] = readin[i]
def writeto_then_readfrom(
self,
address: int,
buffer_out: ReadableBuffer,
buffer_in: WriteableBuffer,
*,
out_start: int = 0,
out_end: Optional[int] = None,
in_start: int = 0,
in_end: Optional[int] = None,
) -> None:
"""Write data from buffer_out to an address and then
read data from an address and into buffer_in
"""
if out_end is None:
out_end = len(buffer_out)
if in_end is None:
in_end = len(buffer_in)
if self._check_lock():
self._write(address, buffer_out[out_start:out_end], False)
self.readfrom_into(address, buffer_in, start=in_start, end=in_end)
def _scl_low(self) -> None:
self._scl.switch_to_output(value=False)
def _sda_low(self) -> None:
self._sda.switch_to_output(value=False)
def _scl_release(self) -> None:
"""Release and wait for the pullups to lift."""
self._scl.switch_to_input()
# Wait at most self._timeout seconds for any clock stretching.
end = monotonic() + self._timeout
while not self._scl.value and end > monotonic():
pass
if not self._scl.value:
raise RuntimeError("Bus timed out.")
def _sda_release(self) -> None:
"""Release and let the pullups lift"""
self._sda.switch_to_input()
def _start(self) -> None:
self._sda_release()
self._scl_release()
self._wait()
self._sda_low()
self._wait()
def _stop(self) -> None:
self._scl_low()
self._wait()
self._sda_low()
self._wait()
self._scl_release()
self._wait()
self._sda_release()
self._wait()
def _repeated_start(self) -> None:
self._scl_low()
self._wait()
self._sda_release()
self._wait()
self._scl_release()
self._wait()
self._sda_low()
self._wait()
def _write_byte(self, byte: int) -> bool:
for bit_position in range(8):
self._scl_low()
if byte & (0x80 >> bit_position):
self._sda_release()
else:
self._sda_low()
self._wait()
self._scl_release()
self._wait()
self._scl_low()
self._sda.switch_to_input() # SDA may go high, but SCL is low
self._wait()
self._scl_release()
self._wait()
ack = self._sda.value # read the ack
self._scl_low()
self._sda_release()
self._wait()
return not ack
def _read_byte(self, ack: bool = False) -> int:
self._scl_low()
self._wait()
# sda will already be an input as we are simulating open drain
data = 0
for _ in range(8):
self._scl_release()
self._wait()
data = (data << 1) | int(self._sda.value)
self._scl_low()
self._wait()
if ack:
self._sda_low()
# else sda will already be in release (open drain) mode
self._wait()
self._scl_release()
self._wait()
self._scl_low()
self._sda_release()
return data & 0xFF
def _probe(self, address: int) -> bool:
self._start()
ok = self._write_byte(address << 1)
self._stop()
return ok > 0
def _write(self, address: int, buffer: ReadableBuffer, transmit_stop: bool) -> None:
self._start()
if not self._write_byte(address << 1):
# raise RuntimeError("Device not responding at 0x{:02X}".format(address))
raise RuntimeError(f"Device not responding at 0x{address:02X}")
for byte in buffer:
if not self._write_byte(byte):
raise RuntimeError(f"Device not responding at 0x{address:02X}")
if transmit_stop:
self._stop()
def _read(self, address: int, length: int) -> bytearray:
self._start()
if not self._write_byte(address << 1 | 1):
# raise RuntimeError("Device not responding at 0x{:02X}".format(address))
raise RuntimeError(f"Device not responding at 0x{address:02X}")
buffer = bytearray(length)
for byte_position in range(length):
buffer[byte_position] = self._read_byte(ack=byte_position != length - 1)
self._stop()
return buffer
class SPI(_BitBangIO):
"""Software-based implementation of the SPI protocol over GPIO pins."""
def __init__(
self, clock: Pin, MOSI: Optional[Pin] = None, MISO: Optional[Pin] = None
) -> None:
"""Initialize bit bang (or software) based SPI. Must provide the SPI
clock, and optionally MOSI and MISO pin numbers. If MOSI is set to None
then writes will be disabled and fail with an error, likewise for MISO
reads will be disabled.
"""
super().__init__()
while self.try_lock():
pass
self._mosi = None
self._miso = None
# Set pins as outputs/inputs.
self._sclk = DigitalInOut(clock)
self._sclk.switch_to_output()
if MOSI is not None:
self._mosi = DigitalInOut(MOSI)
self._mosi.switch_to_output()
if MISO is not None:
self._miso = DigitalInOut(MISO)
self._miso.switch_to_input()
self.configure()
self.unlock()
def deinit(self) -> None:
"""Free any hardware used by the object."""
self._sclk.deinit()
if self._miso:
self._miso.deinit()
if self._mosi:
self._mosi.deinit()
def configure(
self,
*,
baudrate: int = 100000,
polarity: Literal[0, 1] = 0,
phase: Literal[0, 1] = 0,
bits: int = 8,
) -> None:
"""Configures the SPI bus. Only valid when locked."""
if self._check_lock():
if not isinstance(baudrate, int):
raise ValueError("baudrate must be an integer")
if not isinstance(bits, int):
raise ValueError("bits must be an integer")
if bits < 1 or bits > 8:
raise ValueError("bits must be in the range of 1-8")
if polarity not in (0, 1):
raise ValueError("polarity must be either 0 or 1")
if phase not in (0, 1):
raise ValueError("phase must be either 0 or 1")
self._baudrate = baudrate
self._polarity = polarity
self._phase = phase
self._bits = bits
self._half_period = (1 / self._baudrate) / 2 # 50% Duty Cyle delay
# Initialize the clock to the idle state. This is important to
# guarantee that the clock is at a known (idle) state before
# any read/write operations.
self._sclk.value = self._polarity
def _wait(self, start: Optional[int] = None) -> float:
"""Wait for up to one half cycle"""
while (start + self._half_period) > monotonic():
pass
return monotonic() # Return current time
def _should_write(self, to_active: Literal[0, 1]) -> bool:
"""Return true if a bit should be written on the given clock transition."""
# phase 0: write when active is 0
# phase 1: write when active is 1
return self._phase == to_active
def _should_read(self, to_active: Literal[0, 1]) -> bool:
"""Return true if a bit should be read on the given clock transition."""
# phase 0: read when active is 1
# phase 1: read when active is 0
# Data is read on the idle->active transition only when the phase is 1
return self._phase == 1 - to_active
def write(
self, buffer: ReadableBuffer, start: int = 0, end: Optional[int] = None
) -> None:
"""Write the data contained in buf. Requires the SPI being locked.
If the buffer is empty, nothing happens.
"""
# Fail MOSI is not specified.
if self._mosi is None:
raise RuntimeError("Write attempted with no MOSI pin specified.")
if end is None:
end = len(buffer)
if self._check_lock():
start_time = monotonic()
# Note: when we come here, our clock must always be its idle state.
for byte in buffer[start:end]:
for bit_position in range(self._bits):
bit_value = byte & 0x80 >> bit_position
# clock: idle, or has made an active->idle transition.
if self._should_write(to_active=0):
self._mosi.value = bit_value
# clock: wait in idle for half a period
start_time = self._wait(start_time)
# clock: idle->active
self._sclk.value = not self._polarity
if self._should_write(to_active=1):
self._mosi.value = bit_value
# clock: wait in active for half a period
start_time = self._wait(start_time)
# clock: active->idle
self._sclk.value = self._polarity
# clock: stay in idle for the last active->idle transition
# to settle.
start_time = self._wait(start_time)
# pylint: disable=too-many-branches
def readinto(
self,
buffer: WriteableBuffer,
start: int = 0,
end: Optional[int] = None,
write_value: int = 0,
) -> None:
"""Read into the buffer specified by buf while writing zeroes. Requires the SPI being
locked. If the number of bytes to read is 0, nothing happens.
"""
if self._miso is None:
raise RuntimeError("Read attempted with no MISO pin specified.")
if end is None:
end = len(buffer)
if self._check_lock():
start_time = monotonic()
for byte_position, _ in enumerate(buffer[start:end]):
for bit_position in range(self._bits):
bit_mask = 0x80 >> bit_position
bit_value = write_value & 0x80 >> bit_position
# clock: idle, or has made an active->idle transition.
if self._should_write(to_active=0):
if self._mosi is not None:
self._mosi.value = bit_value
# clock: wait half a period.
start_time = self._wait(start_time)
# clock: idle->active
self._sclk.value = not self._polarity
if self._should_read(to_active=1):
if self._miso.value:
# Set bit to 1 at appropriate location.
buffer[byte_position] |= bit_mask
else:
# Set bit to 0 at appropriate location.
buffer[byte_position] &= ~bit_mask
if self._should_write(to_active=1):
if self._mosi is not None:
self._mosi.value = bit_value
# clock: wait half a period
start_time = self._wait(start_time)
# Clock: active->idle
self._sclk.value = self._polarity
if self._should_read(to_active=0):
if self._miso.value:
# Set bit to 1 at appropriate location.
buffer[byte_position] |= bit_mask
else:
# Set bit to 0 at appropriate location.
buffer[byte_position] &= ~bit_mask
# clock: wait another half period for the last transition.
start_time = self._wait(start_time)
def write_readinto(
self,
buffer_out: ReadableBuffer,
buffer_in: WriteableBuffer,
*,
out_start: int = 0,
out_end: Optional[int] = None,
in_start: int = 0,
in_end: Optional[int] = None,
) -> None:
"""Write out the data in buffer_out while simultaneously reading data into buffer_in.
The lengths of the slices defined by buffer_out[out_start:out_end] and
buffer_in[in_start:in_end] must be equal. If buffer slice lengths are
both 0, nothing happens.
"""
if self._mosi is None:
raise RuntimeError("Write attempted with no MOSI pin specified.")
if self._miso is None:
raise RuntimeError("Read attempted with no MISO pin specified.")
if out_end is None:
out_end = len(buffer_out)
if in_end is None:
in_end = len(buffer_in)
if len(buffer_out[out_start:out_end]) != len(buffer_in[in_start:in_end]):
raise RuntimeError("Buffer slices must be equal length")
if self._check_lock():
start_time = monotonic()
for byte_position, _ in enumerate(buffer_out[out_start:out_end]):
for bit_position in range(self._bits):
bit_mask = 0x80 >> bit_position
bit_value = (
buffer_out[byte_position + out_start] & 0x80 >> bit_position
)
in_byte_position = byte_position + in_start
# clock: idle, or has made an active->idle transition.
if self._should_write(to_active=0):
self._mosi.value = bit_value
# clock: wait half a period.
start_time = self._wait(start_time)
# clock: idle->active
self._sclk.value = not self._polarity
if self._should_read(to_active=1):
if self._miso.value:
# Set bit to 1 at appropriate location.
buffer_in[in_byte_position] |= bit_mask
else:
buffer_in[in_byte_position] &= ~bit_mask
if self._should_write(to_active=1):
self._mosi.value = bit_value
# clock: wait half a period
start_time = self._wait(start_time)
# Clock: active->idle
self._sclk.value = self._polarity
if self._should_read(to_active=0):
if self._miso.value:
# Set bit to 1 at appropriate location.
buffer_in[in_byte_position] |= bit_mask
else:
buffer_in[in_byte_position] &= ~bit_mask
# clock: wait another half period for the last transition.
start_time = self._wait(start_time)
# pylint: enable=too-many-branches
@property
def frequency(self) -> int:
"""Return the currently configured baud rate"""
return self._baudrate