forked from google/snappy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
snappy.cc
2426 lines (2199 loc) · 89.3 KB
/
snappy.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2005 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "snappy-internal.h"
#include "snappy-sinksource.h"
#include "snappy.h"
#if !defined(SNAPPY_HAVE_BMI2)
// __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2
// specifically, but it does define __AVX2__ when AVX2 support is available.
// Fortunately, AVX2 was introduced in Haswell, just like BMI2.
//
// BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So,
// GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which
// case issuing BMI2 instructions results in a compiler error.
#if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__))
#define SNAPPY_HAVE_BMI2 1
#else
#define SNAPPY_HAVE_BMI2 0
#endif
#endif // !defined(SNAPPY_HAVE_BMI2)
#if !defined(SNAPPY_HAVE_X86_CRC32)
#if defined(__SSE4_2__)
#define SNAPPY_HAVE_X86_CRC32 1
#else
#define SNAPPY_HAVE_X86_CRC32 0
#endif
#endif // !defined(SNAPPY_HAVE_X86_CRC32)
#if !defined(SNAPPY_HAVE_NEON_CRC32)
#if SNAPPY_HAVE_NEON && defined(__ARM_FEATURE_CRC32)
#define SNAPPY_HAVE_NEON_CRC32 1
#else
#define SNAPPY_HAVE_NEON_CRC32 0
#endif
#endif // !defined(SNAPPY_HAVE_NEON_CRC32)
#if SNAPPY_HAVE_BMI2 || SNAPPY_HAVE_X86_CRC32
// Please do not replace with <x86intrin.h>. or with headers that assume more
// advanced SSE versions without checking with all the OWNERS.
#include <immintrin.h>
#elif SNAPPY_HAVE_NEON_CRC32
#include <arm_acle.h>
#endif
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <string>
#include <utility>
#include <vector>
namespace snappy {
namespace {
// The amount of slop bytes writers are using for unconditional copies.
constexpr int kSlopBytes = 64;
using internal::char_table;
using internal::COPY_1_BYTE_OFFSET;
using internal::COPY_2_BYTE_OFFSET;
using internal::COPY_4_BYTE_OFFSET;
using internal::kMaximumTagLength;
using internal::LITERAL;
#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
using internal::V128;
using internal::V128_Load;
using internal::V128_LoadU;
using internal::V128_Shuffle;
using internal::V128_StoreU;
using internal::V128_DupChar;
#endif
// We translate the information encoded in a tag through a lookup table to a
// format that requires fewer instructions to decode. Effectively we store
// the length minus the tag part of the offset. The lowest significant byte
// thus stores the length. While total length - offset is given by
// entry - ExtractOffset(type). The nice thing is that the subtraction
// immediately sets the flags for the necessary check that offset >= length.
// This folds the cmp with sub. We engineer the long literals and copy-4 to
// always fail this check, so their presence doesn't affect the fast path.
// To prevent literals from triggering the guard against offset < length (offset
// does not apply to literals) the table is giving them a spurious offset of
// 256.
inline constexpr int16_t MakeEntry(int16_t len, int16_t offset) {
return len - (offset << 8);
}
inline constexpr int16_t LengthMinusOffset(int data, int type) {
return type == 3 ? 0xFF // copy-4 (or type == 3)
: type == 2 ? MakeEntry(data + 1, 0) // copy-2
: type == 1 ? MakeEntry((data & 7) + 4, data >> 3) // copy-1
: data < 60 ? MakeEntry(data + 1, 1) // note spurious offset.
: 0xFF; // long literal
}
inline constexpr int16_t LengthMinusOffset(uint8_t tag) {
return LengthMinusOffset(tag >> 2, tag & 3);
}
template <size_t... Ints>
struct index_sequence {};
template <std::size_t N, size_t... Is>
struct make_index_sequence : make_index_sequence<N - 1, N - 1, Is...> {};
template <size_t... Is>
struct make_index_sequence<0, Is...> : index_sequence<Is...> {};
template <size_t... seq>
constexpr std::array<int16_t, 256> MakeTable(index_sequence<seq...>) {
return std::array<int16_t, 256>{LengthMinusOffset(seq)...};
}
alignas(64) const std::array<int16_t, 256> kLengthMinusOffset =
MakeTable(make_index_sequence<256>{});
// Given a table of uint16_t whose size is mask / 2 + 1, return a pointer to the
// relevant entry, if any, for the given bytes. Any hash function will do,
// but a good hash function reduces the number of collisions and thus yields
// better compression for compressible input.
//
// REQUIRES: mask is 2 * (table_size - 1), and table_size is a power of two.
inline uint16_t* TableEntry(uint16_t* table, uint32_t bytes, uint32_t mask) {
// Our choice is quicker-and-dirtier than the typical hash function;
// empirically, that seems beneficial. The upper bits of kMagic * bytes are a
// higher-quality hash than the lower bits, so when using kMagic * bytes we
// also shift right to get a higher-quality end result. There's no similar
// issue with a CRC because all of the output bits of a CRC are equally good
// "hashes." So, a CPU instruction for CRC, if available, tends to be a good
// choice.
#if SNAPPY_HAVE_NEON_CRC32
// We use mask as the second arg to the CRC function, as it's about to
// be used anyway; it'd be equally correct to use 0 or some constant.
// Mathematically, _mm_crc32_u32 (or similar) is a function of the
// xor of its arguments.
const uint32_t hash = __crc32cw(bytes, mask);
#elif SNAPPY_HAVE_X86_CRC32
const uint32_t hash = _mm_crc32_u32(bytes, mask);
#else
constexpr uint32_t kMagic = 0x1e35a7bd;
const uint32_t hash = (kMagic * bytes) >> (31 - kMaxHashTableBits);
#endif
return reinterpret_cast<uint16_t*>(reinterpret_cast<uintptr_t>(table) +
(hash & mask));
}
} // namespace
size_t MaxCompressedLength(size_t source_bytes) {
// Compressed data can be defined as:
// compressed := item* literal*
// item := literal* copy
//
// The trailing literal sequence has a space blowup of at most 62/60
// since a literal of length 60 needs one tag byte + one extra byte
// for length information.
//
// Item blowup is trickier to measure. Suppose the "copy" op copies
// 4 bytes of data. Because of a special check in the encoding code,
// we produce a 4-byte copy only if the offset is < 65536. Therefore
// the copy op takes 3 bytes to encode, and this type of item leads
// to at most the 62/60 blowup for representing literals.
//
// Suppose the "copy" op copies 5 bytes of data. If the offset is big
// enough, it will take 5 bytes to encode the copy op. Therefore the
// worst case here is a one-byte literal followed by a five-byte copy.
// I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
//
// This last factor dominates the blowup, so the final estimate is:
return 32 + source_bytes + source_bytes / 6;
}
namespace {
void UnalignedCopy64(const void* src, void* dst) {
char tmp[8];
std::memcpy(tmp, src, 8);
std::memcpy(dst, tmp, 8);
}
void UnalignedCopy128(const void* src, void* dst) {
// std::memcpy() gets vectorized when the appropriate compiler options are
// used. For example, x86 compilers targeting SSE2+ will optimize to an SSE2
// load and store.
char tmp[16];
std::memcpy(tmp, src, 16);
std::memcpy(dst, tmp, 16);
}
template <bool use_16bytes_chunk>
inline void ConditionalUnalignedCopy128(const char* src, char* dst) {
if (use_16bytes_chunk) {
UnalignedCopy128(src, dst);
} else {
UnalignedCopy64(src, dst);
UnalignedCopy64(src + 8, dst + 8);
}
}
// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
// for handling COPY operations where the input and output regions may overlap.
// For example, suppose:
// src == "ab"
// op == src + 2
// op_limit == op + 20
// After IncrementalCopySlow(src, op, op_limit), the result will have eleven
// copies of "ab"
// ababababababababababab
// Note that this does not match the semantics of either std::memcpy() or
// std::memmove().
inline char* IncrementalCopySlow(const char* src, char* op,
char* const op_limit) {
// TODO: Remove pragma when LLVM is aware this
// function is only called in cold regions and when cold regions don't get
// vectorized or unrolled.
#ifdef __clang__
#pragma clang loop unroll(disable)
#endif
while (op < op_limit) {
*op++ = *src++;
}
return op_limit;
}
#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
// Computes the bytes for shuffle control mask (please read comments on
// 'pattern_generation_masks' as well) for the given index_offset and
// pattern_size. For example, when the 'offset' is 6, it will generate a
// repeating pattern of size 6. So, the first 16 byte indexes will correspond to
// the pattern-bytes {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3} and the
// next 16 byte indexes will correspond to the pattern-bytes {4, 5, 0, 1, 2, 3,
// 4, 5, 0, 1, 2, 3, 4, 5, 0, 1}. These byte index sequences are generated by
// calling MakePatternMaskBytes(0, 6, index_sequence<16>()) and
// MakePatternMaskBytes(16, 6, index_sequence<16>()) respectively.
template <size_t... indexes>
inline constexpr std::array<char, sizeof...(indexes)> MakePatternMaskBytes(
int index_offset, int pattern_size, index_sequence<indexes...>) {
return {static_cast<char>((index_offset + indexes) % pattern_size)...};
}
// Computes the shuffle control mask bytes array for given pattern-sizes and
// returns an array.
template <size_t... pattern_sizes_minus_one>
inline constexpr std::array<std::array<char, sizeof(V128)>,
sizeof...(pattern_sizes_minus_one)>
MakePatternMaskBytesTable(int index_offset,
index_sequence<pattern_sizes_minus_one...>) {
return {
MakePatternMaskBytes(index_offset, pattern_sizes_minus_one + 1,
make_index_sequence</*indexes=*/sizeof(V128)>())...};
}
// This is an array of shuffle control masks that can be used as the source
// operand for PSHUFB to permute the contents of the destination XMM register
// into a repeating byte pattern.
alignas(16) constexpr std::array<std::array<char, sizeof(V128)>,
16> pattern_generation_masks =
MakePatternMaskBytesTable(
/*index_offset=*/0,
/*pattern_sizes_minus_one=*/make_index_sequence<16>());
// Similar to 'pattern_generation_masks', this table is used to "rotate" the
// pattern so that we can copy the *next 16 bytes* consistent with the pattern.
// Basically, pattern_reshuffle_masks is a continuation of
// pattern_generation_masks. It follows that, pattern_reshuffle_masks is same as
// pattern_generation_masks for offsets 1, 2, 4, 8 and 16.
alignas(16) constexpr std::array<std::array<char, sizeof(V128)>,
16> pattern_reshuffle_masks =
MakePatternMaskBytesTable(
/*index_offset=*/16,
/*pattern_sizes_minus_one=*/make_index_sequence<16>());
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
static inline V128 LoadPattern(const char* src, const size_t pattern_size) {
V128 generation_mask = V128_Load(reinterpret_cast<const V128*>(
pattern_generation_masks[pattern_size - 1].data()));
// Uninitialized bytes are masked out by the shuffle mask.
// TODO: remove annotation and macro defs once MSan is fixed.
SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(src + pattern_size, 16 - pattern_size);
return V128_Shuffle(V128_LoadU(reinterpret_cast<const V128*>(src)),
generation_mask);
}
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
static inline std::pair<V128 /* pattern */, V128 /* reshuffle_mask */>
LoadPatternAndReshuffleMask(const char* src, const size_t pattern_size) {
V128 pattern = LoadPattern(src, pattern_size);
// This mask will generate the next 16 bytes in-place. Doing so enables us to
// write data by at most 4 V128_StoreU.
//
// For example, suppose pattern is: abcdefabcdefabcd
// Shuffling with this mask will generate: efabcdefabcdefab
// Shuffling again will generate: cdefabcdefabcdef
V128 reshuffle_mask = V128_Load(reinterpret_cast<const V128*>(
pattern_reshuffle_masks[pattern_size - 1].data()));
return {pattern, reshuffle_mask};
}
#endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
// Fallback for when we need to copy while extending the pattern, for example
// copying 10 bytes from 3 positions back abc -> abcabcabcabca.
//
// REQUIRES: [dst - offset, dst + 64) is a valid address range.
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) {
#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
if (SNAPPY_PREDICT_TRUE(offset <= 16)) {
switch (offset) {
case 0:
return false;
case 1: {
// TODO: Ideally we should memset, move back once the
// codegen issues are fixed.
V128 pattern = V128_DupChar(dst[-1]);
for (int i = 0; i < 4; i++) {
V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
}
return true;
}
case 2:
case 4:
case 8:
case 16: {
V128 pattern = LoadPattern(dst - offset, offset);
for (int i = 0; i < 4; i++) {
V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
}
return true;
}
default: {
auto pattern_and_reshuffle_mask =
LoadPatternAndReshuffleMask(dst - offset, offset);
V128 pattern = pattern_and_reshuffle_mask.first;
V128 reshuffle_mask = pattern_and_reshuffle_mask.second;
for (int i = 0; i < 4; i++) {
V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
pattern = V128_Shuffle(pattern, reshuffle_mask);
}
return true;
}
}
}
#else
if (SNAPPY_PREDICT_TRUE(offset < 16)) {
if (SNAPPY_PREDICT_FALSE(offset == 0)) return false;
// Extend the pattern to the first 16 bytes.
// The simpler formulation of `dst[i - offset]` induces undefined behavior.
for (int i = 0; i < 16; i++) dst[i] = (dst - offset)[i];
// Find a multiple of pattern >= 16.
static std::array<uint8_t, 16> pattern_sizes = []() {
std::array<uint8_t, 16> res;
for (int i = 1; i < 16; i++) res[i] = (16 / i + 1) * i;
return res;
}();
offset = pattern_sizes[offset];
for (int i = 1; i < 4; i++) {
std::memcpy(dst + i * 16, dst + i * 16 - offset, 16);
}
return true;
}
#endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
// Very rare.
for (int i = 0; i < 4; i++) {
std::memcpy(dst + i * 16, dst + i * 16 - offset, 16);
}
return true;
}
// Copy [src, src+(op_limit-op)) to [op, op_limit) but faster than
// IncrementalCopySlow. buf_limit is the address past the end of the writable
// region of the buffer.
inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
char* const buf_limit) {
#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
constexpr int big_pattern_size_lower_bound = 16;
#else
constexpr int big_pattern_size_lower_bound = 8;
#endif
// Terminology:
//
// slop = buf_limit - op
// pat = op - src
// len = op_limit - op
assert(src < op);
assert(op < op_limit);
assert(op_limit <= buf_limit);
// NOTE: The copy tags use 3 or 6 bits to store the copy length, so len <= 64.
assert(op_limit - op <= 64);
// NOTE: In practice the compressor always emits len >= 4, so it is ok to
// assume that to optimize this function, but this is not guaranteed by the
// compression format, so we have to also handle len < 4 in case the input
// does not satisfy these conditions.
size_t pattern_size = op - src;
// The cases are split into different branches to allow the branch predictor,
// FDO, and static prediction hints to work better. For each input we list the
// ratio of invocations that match each condition.
//
// input slop < 16 pat < 8 len > 16
// ------------------------------------------
// html|html4|cp 0% 1.01% 27.73%
// urls 0% 0.88% 14.79%
// jpg 0% 64.29% 7.14%
// pdf 0% 2.56% 58.06%
// txt[1-4] 0% 0.23% 0.97%
// pb 0% 0.96% 13.88%
// bin 0.01% 22.27% 41.17%
//
// It is very rare that we don't have enough slop for doing block copies. It
// is also rare that we need to expand a pattern. Small patterns are common
// for incompressible formats and for those we are plenty fast already.
// Lengths are normally not greater than 16 but they vary depending on the
// input. In general if we always predict len <= 16 it would be an ok
// prediction.
//
// In order to be fast we want a pattern >= 16 bytes (or 8 bytes in non-SSE)
// and an unrolled loop copying 1x 16 bytes (or 2x 8 bytes in non-SSE) at a
// time.
// Handle the uncommon case where pattern is less than 16 (or 8 in non-SSE)
// bytes.
if (pattern_size < big_pattern_size_lower_bound) {
#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
// Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
// to permute the register's contents in-place into a repeating sequence of
// the first "pattern_size" bytes.
// For example, suppose:
// src == "abc"
// op == op + 3
// After V128_Shuffle(), "pattern" will have five copies of "abc"
// followed by one byte of slop: abcabcabcabcabca.
//
// The non-SSE fallback implementation suffers from store-forwarding stalls
// because its loads and stores partly overlap. By expanding the pattern
// in-place, we avoid the penalty.
// Typically, the op_limit is the gating factor so try to simplify the loop
// based on that.
if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
auto pattern_and_reshuffle_mask =
LoadPatternAndReshuffleMask(src, pattern_size);
V128 pattern = pattern_and_reshuffle_mask.first;
V128 reshuffle_mask = pattern_and_reshuffle_mask.second;
// There is at least one, and at most four 16-byte blocks. Writing four
// conditionals instead of a loop allows FDO to layout the code with
// respect to the actual probabilities of each length.
// TODO: Replace with loop with trip count hint.
V128_StoreU(reinterpret_cast<V128*>(op), pattern);
if (op + 16 < op_limit) {
pattern = V128_Shuffle(pattern, reshuffle_mask);
V128_StoreU(reinterpret_cast<V128*>(op + 16), pattern);
}
if (op + 32 < op_limit) {
pattern = V128_Shuffle(pattern, reshuffle_mask);
V128_StoreU(reinterpret_cast<V128*>(op + 32), pattern);
}
if (op + 48 < op_limit) {
pattern = V128_Shuffle(pattern, reshuffle_mask);
V128_StoreU(reinterpret_cast<V128*>(op + 48), pattern);
}
return op_limit;
}
char* const op_end = buf_limit - 15;
if (SNAPPY_PREDICT_TRUE(op < op_end)) {
auto pattern_and_reshuffle_mask =
LoadPatternAndReshuffleMask(src, pattern_size);
V128 pattern = pattern_and_reshuffle_mask.first;
V128 reshuffle_mask = pattern_and_reshuffle_mask.second;
// This code path is relatively cold however so we save code size
// by avoiding unrolling and vectorizing.
//
// TODO: Remove pragma when when cold regions don't get
// vectorized or unrolled.
#ifdef __clang__
#pragma clang loop unroll(disable)
#endif
do {
V128_StoreU(reinterpret_cast<V128*>(op), pattern);
pattern = V128_Shuffle(pattern, reshuffle_mask);
op += 16;
} while (SNAPPY_PREDICT_TRUE(op < op_end));
}
return IncrementalCopySlow(op - pattern_size, op, op_limit);
#else // !SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
// If plenty of buffer space remains, expand the pattern to at least 8
// bytes. The way the following loop is written, we need 8 bytes of buffer
// space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10
// bytes if pattern_size is 2. Precisely encoding that is probably not
// worthwhile; instead, invoke the slow path if we cannot write 11 bytes
// (because 11 are required in the worst case).
if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) {
while (pattern_size < 8) {
UnalignedCopy64(src, op);
op += pattern_size;
pattern_size *= 2;
}
if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
} else {
return IncrementalCopySlow(src, op, op_limit);
}
#endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
}
assert(pattern_size >= big_pattern_size_lower_bound);
constexpr bool use_16bytes_chunk = big_pattern_size_lower_bound == 16;
// Copy 1x 16 bytes (or 2x 8 bytes in non-SSE) at a time. Because op - src can
// be < 16 in non-SSE, a single UnalignedCopy128 might overwrite data in op.
// UnalignedCopy64 is safe because expanding the pattern to at least 8 bytes
// guarantees that op - src >= 8.
//
// Typically, the op_limit is the gating factor so try to simplify the loop
// based on that.
if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
// There is at least one, and at most four 16-byte blocks. Writing four
// conditionals instead of a loop allows FDO to layout the code with respect
// to the actual probabilities of each length.
// TODO: Replace with loop with trip count hint.
ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op);
if (op + 16 < op_limit) {
ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 16, op + 16);
}
if (op + 32 < op_limit) {
ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 32, op + 32);
}
if (op + 48 < op_limit) {
ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 48, op + 48);
}
return op_limit;
}
// Fall back to doing as much as we can with the available slop in the
// buffer. This code path is relatively cold however so we save code size by
// avoiding unrolling and vectorizing.
//
// TODO: Remove pragma when when cold regions don't get vectorized
// or unrolled.
#ifdef __clang__
#pragma clang loop unroll(disable)
#endif
for (char* op_end = buf_limit - 16; op < op_end; op += 16, src += 16) {
ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op);
}
if (op >= op_limit) return op_limit;
// We only take this branch if we didn't have enough slop and we can do a
// single 8 byte copy.
if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) {
UnalignedCopy64(src, op);
src += 8;
op += 8;
}
return IncrementalCopySlow(src, op, op_limit);
}
} // namespace
template <bool allow_fast_path>
static inline char* EmitLiteral(char* op, const char* literal, int len) {
// The vast majority of copies are below 16 bytes, for which a
// call to std::memcpy() is overkill. This fast path can sometimes
// copy up to 15 bytes too much, but that is okay in the
// main loop, since we have a bit to go on for both sides:
//
// - The input will always have kInputMarginBytes = 15 extra
// available bytes, as long as we're in the main loop, and
// if not, allow_fast_path = false.
// - The output will always have 32 spare bytes (see
// MaxCompressedLength).
assert(len > 0); // Zero-length literals are disallowed
int n = len - 1;
if (allow_fast_path && len <= 16) {
// Fits in tag byte
*op++ = LITERAL | (n << 2);
UnalignedCopy128(literal, op);
return op + len;
}
if (n < 60) {
// Fits in tag byte
*op++ = LITERAL | (n << 2);
} else {
int count = (Bits::Log2Floor(n) >> 3) + 1;
assert(count >= 1);
assert(count <= 4);
*op++ = LITERAL | ((59 + count) << 2);
// Encode in upcoming bytes.
// Write 4 bytes, though we may care about only 1 of them. The output buffer
// is guaranteed to have at least 3 more spaces left as 'len >= 61' holds
// here and there is a std::memcpy() of size 'len' below.
LittleEndian::Store32(op, n);
op += count;
}
// When allow_fast_path is true, we can overwrite up to 16 bytes.
if (allow_fast_path) {
char* destination = op;
const char* source = literal;
const char* end = destination + len;
do {
std::memcpy(destination, source, 16);
destination += 16;
source += 16;
} while (destination < end);
} else {
std::memcpy(op, literal, len);
}
return op + len;
}
template <bool len_less_than_12>
static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) {
assert(len <= 64);
assert(len >= 4);
assert(offset < 65536);
assert(len_less_than_12 == (len < 12));
if (len_less_than_12) {
uint32_t u = (len << 2) + (offset << 8);
uint32_t copy1 = COPY_1_BYTE_OFFSET - (4 << 2) + ((offset >> 3) & 0xe0);
uint32_t copy2 = COPY_2_BYTE_OFFSET - (1 << 2);
// It turns out that offset < 2048 is a difficult to predict branch.
// `perf record` shows this is the highest percentage of branch misses in
// benchmarks. This code produces branch free code, the data dependency
// chain that bottlenecks the throughput is so long that a few extra
// instructions are completely free (IPC << 6 because of data deps).
u += offset < 2048 ? copy1 : copy2;
LittleEndian::Store32(op, u);
op += offset < 2048 ? 2 : 3;
} else {
// Write 4 bytes, though we only care about 3 of them. The output buffer
// is required to have some slack, so the extra byte won't overrun it.
uint32_t u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8);
LittleEndian::Store32(op, u);
op += 3;
}
return op;
}
template <bool len_less_than_12>
static inline char* EmitCopy(char* op, size_t offset, size_t len) {
assert(len_less_than_12 == (len < 12));
if (len_less_than_12) {
return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
} else {
// A special case for len <= 64 might help, but so far measurements suggest
// it's in the noise.
// Emit 64 byte copies but make sure to keep at least four bytes reserved.
while (SNAPPY_PREDICT_FALSE(len >= 68)) {
op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64);
len -= 64;
}
// One or two copies will now finish the job.
if (len > 64) {
op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60);
len -= 60;
}
// Emit remainder.
if (len < 12) {
op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
} else {
op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len);
}
return op;
}
}
bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
uint32_t v = 0;
const char* limit = start + n;
if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
*result = v;
return true;
} else {
return false;
}
}
namespace {
uint32_t CalculateTableSize(uint32_t input_size) {
static_assert(
kMaxHashTableSize >= kMinHashTableSize,
"kMaxHashTableSize should be greater or equal to kMinHashTableSize.");
if (input_size > kMaxHashTableSize) {
return kMaxHashTableSize;
}
if (input_size < kMinHashTableSize) {
return kMinHashTableSize;
}
// This is equivalent to Log2Ceiling(input_size), assuming input_size > 1.
// 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)).
return 2u << Bits::Log2Floor(input_size - 1);
}
} // namespace
namespace internal {
WorkingMemory::WorkingMemory(size_t input_size) {
const size_t max_fragment_size = std::min(input_size, kBlockSize);
const size_t table_size = CalculateTableSize(max_fragment_size);
size_ = table_size * sizeof(*table_) + max_fragment_size +
MaxCompressedLength(max_fragment_size);
mem_ = std::allocator<char>().allocate(size_);
table_ = reinterpret_cast<uint16_t*>(mem_);
input_ = mem_ + table_size * sizeof(*table_);
output_ = input_ + max_fragment_size;
}
WorkingMemory::~WorkingMemory() {
std::allocator<char>().deallocate(mem_, size_);
}
uint16_t* WorkingMemory::GetHashTable(size_t fragment_size,
int* table_size) const {
const size_t htsize = CalculateTableSize(fragment_size);
memset(table_, 0, htsize * sizeof(*table_));
*table_size = htsize;
return table_;
}
} // end namespace internal
// Flat array compression that does not emit the "uncompressed length"
// prefix. Compresses "input" string to the "*op" buffer.
//
// REQUIRES: "input" is at most "kBlockSize" bytes long.
// REQUIRES: "op" points to an array of memory that is at least
// "MaxCompressedLength(input.size())" in size.
// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
// REQUIRES: "table_size" is a power of two
//
// Returns an "end" pointer into "op" buffer.
// "end - op" is the compressed size of "input".
namespace internal {
char* CompressFragment(const char* input, size_t input_size, char* op,
uint16_t* table, const int table_size) {
// "ip" is the input pointer, and "op" is the output pointer.
const char* ip = input;
assert(input_size <= kBlockSize);
assert((table_size & (table_size - 1)) == 0); // table must be power of two
const uint32_t mask = 2 * (table_size - 1);
const char* ip_end = input + input_size;
const char* base_ip = ip;
const size_t kInputMarginBytes = 15;
if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) {
const char* ip_limit = input + input_size - kInputMarginBytes;
for (uint32_t preload = LittleEndian::Load32(ip + 1);;) {
// Bytes in [next_emit, ip) will be emitted as literal bytes. Or
// [next_emit, ip_end) after the main loop.
const char* next_emit = ip++;
uint64_t data = LittleEndian::Load64(ip);
// The body of this loop calls EmitLiteral once and then EmitCopy one or
// more times. (The exception is that when we're close to exhausting
// the input we goto emit_remainder.)
//
// In the first iteration of this loop we're just starting, so
// there's nothing to copy, so calling EmitLiteral once is
// necessary. And we only start a new iteration when the
// current iteration has determined that a call to EmitLiteral will
// precede the next call to EmitCopy (if any).
//
// Step 1: Scan forward in the input looking for a 4-byte-long match.
// If we get close to exhausting the input then goto emit_remainder.
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match is
// found, immediately go back to looking at every byte. This is a small
// loss (~5% performance, ~0.1% density) for compressible data due to more
// bookkeeping, but for non-compressible data (such as JPEG) it's a huge
// win since the compressor quickly "realizes" the data is incompressible
// and doesn't bother looking for matches everywhere.
//
// The "skip" variable keeps track of how many bytes there are since the
// last match; dividing it by 32 (ie. right-shifting by five) gives the
// number of bytes to move ahead for each iteration.
uint32_t skip = 32;
const char* candidate;
if (ip_limit - ip >= 16) {
auto delta = ip - base_ip;
for (int j = 0; j < 4; ++j) {
for (int k = 0; k < 4; ++k) {
int i = 4 * j + k;
// These for-loops are meant to be unrolled. So we can freely
// special case the first iteration to use the value already
// loaded in preload.
uint32_t dword = i == 0 ? preload : static_cast<uint32_t>(data);
assert(dword == LittleEndian::Load32(ip + i));
uint16_t* table_entry = TableEntry(table, dword, mask);
candidate = base_ip + *table_entry;
assert(candidate >= base_ip);
assert(candidate < ip + i);
*table_entry = delta + i;
if (SNAPPY_PREDICT_FALSE(LittleEndian::Load32(candidate) == dword)) {
*op = LITERAL | (i << 2);
UnalignedCopy128(next_emit, op + 1);
ip += i;
op = op + i + 2;
goto emit_match;
}
data >>= 8;
}
data = LittleEndian::Load64(ip + 4 * j + 4);
}
ip += 16;
skip += 16;
}
while (true) {
assert(static_cast<uint32_t>(data) == LittleEndian::Load32(ip));
uint16_t* table_entry = TableEntry(table, data, mask);
uint32_t bytes_between_hash_lookups = skip >> 5;
skip += bytes_between_hash_lookups;
const char* next_ip = ip + bytes_between_hash_lookups;
if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) {
ip = next_emit;
goto emit_remainder;
}
candidate = base_ip + *table_entry;
assert(candidate >= base_ip);
assert(candidate < ip);
*table_entry = ip - base_ip;
if (SNAPPY_PREDICT_FALSE(static_cast<uint32_t>(data) ==
LittleEndian::Load32(candidate))) {
break;
}
data = LittleEndian::Load32(next_ip);
ip = next_ip;
}
// Step 2: A 4-byte match has been found. We'll later see if more
// than 4 bytes match. But, prior to the match, input
// bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
assert(next_emit + 16 <= ip_end);
op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit);
// Step 3: Call EmitCopy, and then see if another EmitCopy could
// be our next move. Repeat until we find no match for the
// input immediately after what was consumed by the last EmitCopy call.
//
// If we exit this loop normally then we need to call EmitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can exit
// this loop via goto if we get close to exhausting the input.
emit_match:
do {
// We have a 4-byte match at ip, and no need to emit any
// "literal bytes" prior to ip.
const char* base = ip;
std::pair<size_t, bool> p =
FindMatchLength(candidate + 4, ip + 4, ip_end, &data);
size_t matched = 4 + p.first;
ip += matched;
size_t offset = base - candidate;
assert(0 == memcmp(base, candidate, matched));
if (p.second) {
op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched);
} else {
op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched);
}
if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) {
goto emit_remainder;
}
// Expect 5 bytes to match
assert((data & 0xFFFFFFFFFF) ==
(LittleEndian::Load64(ip) & 0xFFFFFFFFFF));
// We are now looking for a 4-byte match again. We read
// table[Hash(ip, mask)] for that. To improve compression,
// we also update table[Hash(ip - 1, mask)] and table[Hash(ip, mask)].
*TableEntry(table, LittleEndian::Load32(ip - 1), mask) =
ip - base_ip - 1;
uint16_t* table_entry = TableEntry(table, data, mask);
candidate = base_ip + *table_entry;
*table_entry = ip - base_ip;
// Measurements on the benchmarks have shown the following probabilities
// for the loop to exit (ie. avg. number of iterations is reciprocal).
// BM_Flat/6 txt1 p = 0.3-0.4
// BM_Flat/7 txt2 p = 0.35
// BM_Flat/8 txt3 p = 0.3-0.4
// BM_Flat/9 txt3 p = 0.34-0.4
// BM_Flat/10 pb p = 0.4
// BM_Flat/11 gaviota p = 0.1
// BM_Flat/12 cp p = 0.5
// BM_Flat/13 c p = 0.3
} while (static_cast<uint32_t>(data) == LittleEndian::Load32(candidate));
// Because the least significant 5 bytes matched, we can utilize data
// for the next iteration.
preload = data >> 8;
}
}
emit_remainder:
// Emit the remaining bytes as a literal
if (ip < ip_end) {
op = EmitLiteral</*allow_fast_path=*/false>(op, ip, ip_end - ip);
}
return op;
}
} // end namespace internal
// Called back at avery compression call to trace parameters and sizes.
static inline void Report(const char *algorithm, size_t compressed_size,
size_t uncompressed_size) {
// TODO: Switch to [[maybe_unused]] when we can assume C++17.
(void)algorithm;
(void)compressed_size;
(void)uncompressed_size;
}
// Signature of output types needed by decompression code.
// The decompression code is templatized on a type that obeys this
// signature so that we do not pay virtual function call overhead in
// the middle of a tight decompression loop.
//
// class DecompressionWriter {
// public:
// // Called before decompression
// void SetExpectedLength(size_t length);
//
// // For performance a writer may choose to donate the cursor variable to the
// // decompression function. The decompression will inject it in all its
// // function calls to the writer. Keeping the important output cursor as a
// // function local stack variable allows the compiler to keep it in
// // register, which greatly aids performance by avoiding loads and stores of
// // this variable in the fast path loop iterations.
// T GetOutputPtr() const;
//
// // At end of decompression the loop donates the ownership of the cursor
// // variable back to the writer by calling this function.
// void SetOutputPtr(T op);
//
// // Called after decompression
// bool CheckLength() const;
//
// // Called repeatedly during decompression
// // Each function get a pointer to the op (output pointer), that the writer
// // can use and update. Note it's important that these functions get fully
// // inlined so that no actual address of the local variable needs to be
// // taken.
// bool Append(const char* ip, size_t length, T* op);
// bool AppendFromSelf(uint32_t offset, size_t length, T* op);
//
// // The rules for how TryFastAppend differs from Append are somewhat
// // convoluted:
// //
// // - TryFastAppend is allowed to decline (return false) at any
// // time, for any reason -- just "return false" would be
// // a perfectly legal implementation of TryFastAppend.
// // The intention is for TryFastAppend to allow a fast path
// // in the common case of a small append.
// // - TryFastAppend is allowed to read up to <available> bytes
// // from the input buffer, whereas Append is allowed to read
// // <length>. However, if it returns true, it must leave
// // at least five (kMaximumTagLength) bytes in the input buffer
// // afterwards, so that there is always enough space to read the
// // next tag without checking for a refill.
// // - TryFastAppend must always return decline (return false)
// // if <length> is 61 or more, as in this case the literal length is not