-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainvae.py
202 lines (163 loc) · 7.15 KB
/
trainvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
from model.vocab import get_vocab_from_file, START_CHAR, END_CHAR
from model.model import VAERNN
import torch.utils.data
import numpy as np
import torch
import torch.nn as nn
import torch.nn.utils.rnn
import torch.nn.functional as F
from tqdm import tqdm
import os
def getconfig(args):
config_ = {
'epochs': 220,
'batch_size': 128,
'vocab_size': 28,
'emb_size': 32,
'sample_freq': 1,
'max_len': 180,
'z_size' : 3
}
return config_
def count_valid_samples(smiles):
from rdkit import Chem
count = 0
for smi in smiles:
try:
mol = Chem.MolFromSmiles(smi[1:-1])
except:
continue
if mol is not None:
count += 1
return count
def get_input_data(fname, c2i):
lines = open(fname, 'r').readlines()[:400000]
lines = list(map(lambda x: x.split(','), (filter(lambda x: len(x) != 0, map(lambda x: x.strip(), lines)))))
lines1 = [torch.from_numpy(np.array([c2i(START_CHAR)] + list(map(lambda x: int(x), y)), dtype=np.int64)) for y in
lines]
lines2 = [torch.from_numpy(np.array(list(map(lambda x: int(x), y)) + [c2i(END_CHAR)], dtype=np.int64)) for y in
lines]
print("Read", len(lines2), "SMILES.")
return lines1, lines2
def sample(model, i2c, c2i, device, z_dim=2, temp=1, batch_size=10, max_len=150, alpha=0.5, num_layers=2):
model.eval()
with torch.no_grad():
h = torch.zeros((num_layers, batch_size, 256)).to(device) #, torch.zeros((num_layers, batch_size, 256)).to(device))
x = torch.tensor(c2i(START_CHAR)).unsqueeze(0).unsqueeze(0).repeat((max_len, batch_size)).to(device)
z = torch.randn((1, batch_size, z_dim)).to(device)
eos_mask = torch.zeros(batch_size, dtype=torch.bool).to(device)
end_pads = torch.tensor([max_len - 1]).repeat(batch_size).to(device)
for i in range(1, max_len):
x_emb = model.encoder.emb(x[i - 1, :]).unsqueeze(0)
z = alpha * z + torch.randn(z.shape, device=z.device) * (1-(alpha * alpha)) + 0.0 #AR
# x_emb = torch.cat([x_emb, z], dim=-1)
x_emb = z
o, h = model.decoder.lstm(x_emb, (h))
y = model.decoder.linear(o.squeeze(0))
y = F.softmax(y / temp, dim=-1)
# w = torch.multinomial(y, 1).squeeze()
w = torch.argmax(y, dim=-1).squeeze()
x[i, ~eos_mask] = w[~eos_mask]
i_eos_mask = ~eos_mask & (w == c2i(END_CHAR))
end_pads[i_eos_mask] = i + 1
eos_mask = eos_mask | i_eos_mask
new_x = []
for i in range(x.size(1)):
new_x.append(x[:end_pads[i], i].cpu())
return ["".join(map(i2c, list(i_x.cpu().flatten().numpy()))) for i_x in new_x]
def mycollate(x):
x_batches = []
y_batchese = []
for i in x:
x_batches.append(i[0])
y_batchese.append(i[1])
return x_batches, y_batchese
class ToyDataset(torch.utils.data.Dataset):
def __init__(self, s, e):
self.s = s
self.e = e
assert (len(self.s) == len(self.e))
def __len__(self):
return len(self.s)
def __getitem__(self, item):
return self.s[item], self.e[item]
def train_epoch(model, optimizer, dataloader, config, device, epoch=1):
model.train()
lossf = nn.CrossEntropyLoss().to(device)
losses = []
beta = ((1e-2) / float(config['max_len']) ) * (1 * epoch)
iters = tqdm(enumerate(dataloader), postfix={'loss' : 0, 'kl' : 0})
for i, (y, y_hat) in iters:
optimizer.zero_grad()
y = [x.to(device) for x in y]
batch_size = len(y)
packed_seq_hat, _ = nn.utils.rnn.pad_packed_sequence(nn.utils.rnn.pack_sequence(y_hat, enforce_sorted=False),
total_length=config['max_len'])
pred, (mu, logvar) = model(y, return_mu=True, force=(epoch < 1), prob_forcing=max(0, 1.0 - (epoch * 0.05)))
packed_seq_hat = packed_seq_hat.view(-1).long()
pred = pred.view(batch_size * config['max_len'], -1)
loss = lossf(pred, packed_seq_hat.to(device)).mean()
kldiv = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
loss += beta * kldiv
loss.backward()
losses.append(loss.item())
optimizer.step()
if i % 2 == 0:
iters.set_postfix({'loss' : loss.item(), 'kl' : kldiv.item()})
return np.array(losses).flatten().mean()
def main(args, device):
config = getconfig(args)
print("loading data.")
vocab, c2i, i2c = get_vocab_from_file(args.i + "/vocab.txt")
print("Vocab size is", len(vocab))
s, e = get_input_data(args.i + "/out.txt", c2i)
input_data = ToyDataset(s, e)
print("Done.")
## make data generator
dataloader = torch.utils.data.DataLoader(input_data, pin_memory=True, batch_size=config['batch_size'],
collate_fn=mycollate)
model = VAERNN(config['vocab_size'], config['emb_size'], startchar=c2i(START_CHAR), endchar=c2i(END_CHAR), z_size=config['z_size'], max_len=config['max_len']).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
epoch_start = 0
if args.ct:
print("Continuing from save.")
pt = torch.load(args.logdir + "/autosave.model.pt")
model.load_state_dict(pt['state_dict'])
optimizer.load_state_dict(pt['optim_state_dict'])
epoch_start = pt['epoch'] + 1
with open(args.logdir + "/training_log.csv", 'w') as flog:
flog.write("epoch,train_loss,sampled,valid")
for epoch in range(epoch_start, config['epochs']):
avg_loss = train_epoch(model, optimizer, dataloader, config, device, epoch=epoch)
samples = sample(model, i2c, c2i, device, config['z_size'], batch_size=8, max_len=config['max_len'])
valid = count_valid_samples(samples)
print(samples)
print("Total valid samples:", valid, float(valid))
flog.write( ",".join([str(epoch), str(avg_loss), str(len(samples)), str(valid)]) + "\n")
torch.save(
{
'state_dict' : model.state_dict(),
'optim_state_dict' : optimizer.state_dict(),
'epoch' : epoch
}, args.logdir + "/autosave.model.pt"
)
if __name__ == '__main__':
print("Note: This script is very picky. This will only run on a GPU. ")
parser = argparse.ArgumentParser()
parser.add_argument('-i', help='Data from vocab folder', type=str, required=True)
parser.add_argument('--logdir', help='place to store things.', type=str, required=True)
parser.add_argument('--ct', help='continue training for longer', type=bool, default=False)
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Device: ", device)
path = args.logdir
import torch
torch.autograd.set_detect_anomaly(True)
try:
os.mkdir(path)
except OSError:
print("Creation of the directory %s failed. Maybe it already exists? I will overwrite :)" % path)
else:
print("Successfully created the directory %s " % path)
main(args, device)