-
Notifications
You must be signed in to change notification settings - Fork 4
/
consumption.qmd
847 lines (645 loc) · 25.3 KB
/
consumption.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
---
title: "Consumption and Sales"
subtitle: "Electricity Sales in Alaska, 2011-2019"
---
```{r}
# Import packages
library(readr)
library(dplyr)
library(tidyr)
library(stringr)
library(ggplot2)
library(ggiraph)
library(scales)
# Import the consumption data
consumption_data <- read.csv(file = "data/final_data/consumption.csv")
# Function declarations
source("scripts/inline_functions/consumption_inline_functions.R")
source("scripts/R/theme_electrified.R")
# Function to make space regardless of execution format
# To use: write `r space()` outside of a code block
# Modify globally at ./scripts/inline_functions/space.R
source("scripts/R/space.R")
```
```{r}
# Data transformations
# Regionalized consumption transform
regional_consumption_data <- consumption_data %>%
group_by(acep_region, year, class) %>%
summarise(
revenue = sum(revenue, na.rm = TRUE),
sales = sum(sales, na.rm = TRUE),
customers = sum(customers, na.rm = TRUE)
) %>%
mutate(
sales_per_capita = sales / customers
)
# Statewide consumption transform
statewide_consumption_data <- consumption_data %>%
group_by(year, class) %>%
summarise(
revenue = sum(revenue, na.rm = TRUE),
sales = sum(sales, na.rm = TRUE),
customers = sum(customers, na.rm = TRUE)
)
# Statewide change transform
statewide_delta <- consumption_data %>%
group_by(year, class) %>%
summarize(
revenue = sum(revenue, na.rm = TRUE),
sales = sum(sales, na.rm = TRUE),
customers = sum(customers, na.rm = TRUE),
.groups = 'drop'
) %>%
filter((year == 2011 | year == 2019) & class != "Total") %>%
arrange(year) %>%
group_by(class) %>%
mutate(
sales_2011 = lag(sales, default = 0),
customers_2011 = lag(customers, default = 0)
) %>%
ungroup() %>%
mutate(
sales_delta = (sales - sales_2011) / sales_2011,
customers_delta = (customers - customers_2011) / customers_2011,
sales_delta_percent = sales_delta * 100
) %>%
filter(year == 2019)
# Sales per capita transform
sales_per_capita_data <-
regional_consumption_data %>%
filter(class == "Residential") %>%
group_by(acep_region, year) %>%
mutate(sales_per_capita = (sales/customers) * 1000) %>%
ungroup()
```
`r space(br="", vspace="-3em")`
## General Overview {#sec-consumption}
The data presented in this section is from calendar years 2011 to 2019. More recent data has been omitted due to issues with data completeness and validity.
Across the state, electricity sales (herein referred to as consumption), has fallen when comparing the 2011 and 2019 calendar years. To visualize this trend, we look at the percentage changes from 2011 to 2019 in electricity consumption by customer class (`r if (knitr::is_html_output())"@fig-change-customer-sales-html" else if (knitr::is_latex_output()) "@fig-change-customer-sales-pdf"`). We highlight the following customer class definitions:
- **Residential**: Residential electric customers
- **Commercial**: Commercial electric customers
- **Other**: For EIA reported data, the Other group includes industrial and transportation customers. For PCE reported data, it includes community and government accounts. No industrial accounts were reported in the PCE data.
Statewide electricity consumption growth for the residential sector was `r statewide_consumption_delta("Residential","sales",pct=TRUE)`% from `r statewide_consumption("Residential","sales", 2011, decimals=0)` GWh in 2011 to `r statewide_consumption("Residential","sales", 2019, decimals=0)` GWh in 2019. The commercial sector growth was `r statewide_consumption_delta("Commercial","sales",pct=TRUE)`% from `r statewide_consumption("Commercial","sales", 2011, decimals=0)` GWh in 2011 to `r statewide_consumption("Commercial","sales", 2019, decimals=0)` GWh in 2019. Finally, Statewide electricity consumption growth for the ‘Other’ customer class was `r statewide_consumption_delta("Other","sales",pct=TRUE)`% from `r statewide_consumption("Other","sales", 2011, decimals=0)` GWh in 2011 to `r statewide_consumption("Other","sales", 2019, decimals=0)` GWh in 2019.
<!-- [^1]: For EIA reported data, the Other group includes industrial and transportation customers. For PCE reported data, it includes community and government accounts. No industrial accounts were reported in the PCE data. -->
`r space()`
```{r}
# Plot for statewide change in sales (html and pdf code)
sales_plot <-
ggplot(
statewide_delta,
aes(
x = sales_delta_percent,
y = reorder(class, sales_delta),
fill = class)) +
geom_bar(stat = "identity") +
geom_vline(xintercept = 0, color = "black") + # Add a vertical line at x = 0
scale_x_continuous(
name = "Percent Change",
breaks = seq(-12, 1, 2),
expand = c(0, 0)) +
scale_y_discrete(
name = "",
expand = c(0, 0)) +
scale_fill_manual(
values = c(
"Other" = "#fad900",
"Residential" = "#0084c1",
"Commercial" = "#e29617")) +
theme_electrified() +
theme(panel.grid.major.y = element_blank())
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-change-customer-sales-html
#| fig-cap: "Change in Sales by Customer Class, Statewide, from 2011 to 2019"
sales_html <-
sales_plot +
geom_bar_interactive(
stat = "identity",
aes(
tooltip = paste0(
round(sales_delta * 100, 1), "% ", "Change in Sales",
"<br>",
class, " Customers",
"<br>",
"Years 2011-2019"))
)
girafe(
code = print(sales_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-change-customer-sales-pdf
#| fig-cap: "Change in Sales by Customer Class, Statewide, from 2011 to 2019"
# code for static pdf plot
sales_pdf <-
sales_plot +
geom_bar(stat = "identity")
print(sales_pdf)
```
`r space()`
We also examine the change in the number of customer accounts across the state. The total number of customer accounts in the state increased `r statewide_consumption_delta("Total","customers",pct=TRUE)`% from approximately `r statewide_consumption("Total","customers",2011,decimals=0)` to `r statewide_consumption("Total","customers",2019,decimals=0)`. We plot the percentage increases in customer accounts by category in `r if (knitr::is_html_output())"@fig-change-customer-accounts-html" else if (knitr::is_latex_output()) "@fig-change-customer-accounts-pdf"`. Residential accounts across the state increased `r statewide_consumption_delta("Residential","customers",pct=TRUE)`% from approximately `r statewide_consumption("Residential","customers",2011,decimals=0)` to `r statewide_consumption("Residential","customers",2019,decimals=0)`. The number of commercial accounts across the state increased `r statewide_consumption_delta("Commercial","customers",pct=TRUE)`% from `r statewide_consumption("Commercial","customers",2011,decimals=0)` to `r statewide_consumption("Commercial","customers",2019,decimals=0)`. Finally, the number of other accounts across the state has increased `r statewide_consumption_delta("Other","customers",pct=TRUE)`% from approximately `r statewide_consumption("Other","customers",2011,decimals=0)` to `r statewide_consumption("Other","customers",2019,decimals=0)`.
`r space()`
```{r}
# statewide increase in customer accounts
# code for both html and pdf
customers_plot <-
ggplot(
statewide_delta,
aes(
x = customers_delta * 100,
y = reorder(class, desc(customers_delta)),
fill = class)) +
scale_x_continuous(
name = "Percent Change",
breaks = seq(0, 16, 2),
expand = c(0, 0)) +
scale_y_discrete(
name = "",
expand = c(0, 0)) +
scale_fill_manual(
values = c(
"Residential" = "#0084c1",
"Commercial" = "#e29617",
"Other" = "#fad900")) +
theme_electrified() +
theme(panel.grid.major.y = element_blank())
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-change-customer-accounts-html
#| fig-cap: "Change in Customer Accounts by Class, Statewide, from 2011 to 2019"
customers_html <-
customers_plot +
geom_bar_interactive(
stat = "identity",
aes(
tooltip = paste0(
round(customers_delta * 100, 1), "% ", "Change in Accounts",
"<br>",
class, " Customers",
"<br>",
"Years 2011-2019"
))
)
girafe(code = print(customers_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-change-customer-accounts-pdf
#| fig-cap: "Change in Customer Accounts by Class, Statewide, from 2011 to 2019"
# code for static pdf plot
customers_pdf <-
customers_plot +
geom_bar(stat = "identity")
print(customers_pdf)
```
`r space()`
`r if (knitr::is_html_output())"@fig-sales_per_capita-html" else if (knitr::is_latex_output()) "@fig-sales-per-capita-pdf"` <!--orig: The following table--> shows the average annual electricity consumption for each of the regions. The Coastal region led the state in consumption per capita, with an average of `r regional_consumption_per_capita("Coastal","Residential")` kWh per customer per year. This was followed by the Railbelt region with `r regional_consumption_per_capita("Railbelt","Residential")` kWh per capita and the Rural Remote region with `r regional_consumption_per_capita("Rural Remote","Residential")` kWh per capita. Overall, each region has seen reductions in consumption per capita, which may reflect improvements in energy efficient technologies and energy efficiency/conservation behaviors.
`r space()`
```{r}
# code for both html and pdf
# filter the last year for each region for the text labels
last_year_data <- sales_per_capita_data %>%
group_by() %>%
filter(year == max(year))
sales_per_capita_plot <-
ggplot(
sales_per_capita_data,
aes(
x = year,
y = sales_per_capita,
color = acep_region,
group = acep_region)) +
geom_text(
data = last_year_data,
aes(label = acep_region),
hjust = 1.1,
vjust = 2.5) +
scale_x_continuous(
name = "",
breaks = seq(2011, 2019, 1),
expand = c(0, 0, 0, 0.1)) +
scale_y_continuous(
name = "Kilowatt Hours (kWh)",
limits = c(3000, 10000),
breaks = seq(3000, 10000, 1000),
labels = scales::comma,
expand = c(0, 0)) +
scale_color_manual(values = c("#8CBBDA", "#97CD93", "#F28D8C")) +
theme_electrified() +
theme(legend.position = "none")
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-sales_per_capita-html
#| fig-cap: "Average Residential Sales per Customer"
caption_include = "Note: For EIA reported data, the Other customer class includes industrial and transportation customers. For PCE reported data, it includes community and government customers. No industrial customers were reported in the PCE data."
sales_per_capita_html <-
sales_per_capita_plot +
geom_line_interactive(linewidth = 2) +
geom_point_interactive(
aes(
tooltip = paste(
comma(round(sales_per_capita, 0)),
"kWh per Customer",
"<br>Year", year
)
),
size = 10, color = "transparent")
girafe(code = print(sales_per_capita_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-sales-per-capita-pdf
#| fig-cap: "Average Residential Sales per Customer"
sales_per_capita_pdf <-
sales_per_capita_plot +
geom_line(linewidth = 2)
print(sales_per_capita_pdf)
```
`r space()`
::: {.content-visible when-format="pdf"}
\newpage
:::
## Coastal
To estimate the average yearly growth rate in each customer class, we calculate the cumulative compound average growth rate (CAGR). From 2011 to 2019, the coastal region saw an average yearly growth rate of `r cagr("Coastal", "Residential", "sales")`% for residential sales, `r cagr("Coastal", "Commercial", "sales")`% for commercial sales, and `r cagr("Coastal", "Other", "sales")`% for all other sales. `r if (knitr::is_html_output())"@fig-delivered-by-class-coastal-html" else if (knitr::is_latex_output()) "@fig-delivered-by-class-coastal-pdf"` shows these sales in GWh for each year.
`r space(vspace="0em")`
```{r}
# Filter data
filtered_data <- regional_consumption_data %>%
filter(class != "Total" & acep_region == "Coastal") %>%
mutate(
class = factor(class, levels = c("Residential", "Commercial", "Other")),
tooltip = paste(
round((sales / 1000), 0), "GWh Delivered",
"<br>", class, "Customers",
"<br>Year", year
)
)
# Create plot
coastal_consumption_plot <-
ggplot(
filtered_data,
aes(
x = year,
y = sales / 1000,
fill = reorder(class, sales))) +
scale_x_continuous(
name = "",
breaks = seq(2011, 2019, 1)) +
scale_y_continuous(
name = "Gigawatt Hours (GWh)",
limits = c(0, 1200),
breaks = seq(0, 1200, 200),
expand = c(0, 0),
labels = scales::comma) +
scale_fill_manual(
values = c(
"Residential" = "#0084c1",
"Commercial" = "#e29617",
"Other" = "#fad900"),
name = "Customer Class"
) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(title = NULL))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-delivered-by-class-coastal-html
#| fig-cap: "Delivered Electricity by Customer Class, Coastal Region"
coastal_consumption_html <-
coastal_consumption_plot +
geom_bar_interactive(
tooltip = filtered_data$tooltip,
stat = "identity",
position = "stack"
)
girafe(code = print(coastal_consumption_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-delivered-by-class-coastal-pdf
#| fig-cap: "Delivered Electricity by Customer Class, Coastal Region"
coastal_consumption_pdf <-
coastal_consumption_plot +
geom_bar(stat = "identity", position = "stack")
print(coastal_consumption_pdf)
```
`r space()`
While customer sales fell overall, customer accounts in the Coastal region increased for all customer classes. `r if (knitr::is_html_output())"@fig-accounts-coastal-hml" else if (knitr::is_latex_output()) "@fig-accounts-coastal-pdf"` shows the trend in customer accounts by class for the Coastal region. The average yearly growth rate in customer accounts was `r cagr("Coastal", "Residential", "customers")`% for the residential class, `r cagr("Coastal", "Commercial", "customers")`% for the commercial class, and `r cagr("Coastal", "Other", "customers")`% for the other class.
`r space(vspace="0em")`
```{r}
# Filter data
filtered_data <- regional_consumption_data %>%
filter(class != "Total" & acep_region == "Coastal") %>%
mutate(
class = factor(class, levels = c("Residential", "Commercial", "Other")),
tooltip = paste(
comma(round((customers), 0)), "Accounts",
"<br>", class, "Class",
"<br>Year", year
)
)
# Create plot
coastal_customers_plot <-
ggplot(
filtered_data,
aes(
x = year,
y = customers,
fill = reorder(class, sales))) +
scale_x_continuous(
name = "",
breaks = seq(2011, 2019, 1)) +
scale_y_continuous(
name = "Accounts",
limits = c(0, 60000),
breaks = seq(0, 60000, 10000),
expand = c(0, 0),
labels = scales::comma) +
scale_fill_manual(
values = c(
"Residential" = "#0084c1",
"Commercial" = "#e29617",
"Other" = "#fad900"),
name = "Customer Class"
) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(title = NULL))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-accounts-coastal-hml
#| fig-cap: "Number of Customer Accounts, Coastal region"
coastal_customers_html <-
coastal_customers_plot +
geom_bar_interactive(
tooltip = filtered_data$tooltip,
stat = "identity",
position = "stack"
)
girafe(code = print(coastal_customers_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-accounts-coastal-pdf
#| fig-cap: "Number of Customer Accounts, Coastal region"
coastal_customers_pdf <-
coastal_customers_plot +
geom_bar(stat = "identity", position = "stack")
print(coastal_customers_pdf)
```
`r space(vspace="0em")`
::: {.content-visible when-format="pdf"}
\newpage
:::
## Railbelt
From 2011 to 2019, the Railbelt region saw an average yearly growth rate of `r cagr("Railbelt", "Residential", "sales")`% for residential sales, `r cagr("Railbelt", "Commercial", "sales")`% for commercial sales, and `r cagr("Railbelt", "Other", "sales")`% for all other sales. `r if (knitr::is_html_output())"@fig-delivered-by-class-railbelt-html" else if (knitr::is_latex_output()) "@fig-delivered-by-class-railbelt-pdf"` shows these sales in GWh for each year.
`r space(vspace="0em")`
```{r}
# Filter data
filtered_data <- regional_consumption_data %>%
filter(class != "Total" & acep_region == "Railbelt") %>%
mutate(
class = factor(class, levels = c("Residential", "Commercial", "Other")),
tooltip = paste(
round((sales / 1000), 0), "GWh Delivered",
"<br>", class, "Customers",
"<br>Year", year
)
)
# Create plot
railbelt_consumption_plot <-
ggplot(
filtered_data,
aes(
x = year,
y = sales / 1000,
fill = reorder(class, sales))) +
scale_x_continuous(
name = "",
breaks = seq(2011, 2019, 1)) +
scale_y_continuous(
name = "Gigawatt Hours (GWh)",
limits = c(0, 5000),
breaks = seq(0, 5000, 500),
expand = c(0, 0),
labels = scales::comma) +
scale_fill_manual(
values = c(
"Residential" = "#0084c1",
"Commercial" = "#e29617",
"Other" = "#fad900"),
name = "Customer Class"
) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(title = NULL))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-delivered-by-class-railbelt-html
#| fig-cap: "Delivered Electricity by Customer Class, Railbelt Region"
railbelt_consumption_html <-
railbelt_consumption_plot +
geom_bar_interactive(
tooltip = filtered_data$tooltip,
stat = "identity",
position = "stack"
)
girafe(code = print(railbelt_consumption_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-delivered-by-class-railbelt-pdf
#| fig-cap: "Delivered Electricity by Customer Class, Railbelt Region"
railbelt_consumption_pdf <-
railbelt_consumption_plot +
geom_bar(stat = "identity")
print(railbelt_consumption_pdf)
```
`r space()`
The trends in the number of customer accounts by class are visualized in `r if (knitr::is_html_output())"@fig-accounts-railbelt-html" else if (knitr::is_latex_output()) "@fig-accounts-railbelt-pdf"`. The average yearly growth rate in customer accounts on the Railbelt was `r cagr("Railbelt", "Residential", "customers")`% for the residential class, `r cagr("Railbelt", "Commercial", "customers")`% for the commercial class, and `r cagr("Railbelt", "Other", "customers")`% for the other class.
`r space(vspace="0em")`
```{r}
# Filter data
filtered_data <- regional_consumption_data %>%
filter(class != "Total" & acep_region == "Railbelt") %>%
mutate(
class = factor(class, levels = c("Residential", "Commercial", "Other")),
tooltip = paste(
comma(round((customers), 0)), "Accounts",
"<br>", class, "Class",
"<br>Year", year
)
)
# Create plot
railbelt_customers_plot <-
ggplot(
filtered_data,
aes(
x = year,
y = customers,
fill = reorder(class, sales))) +
scale_x_continuous(
name = "",
breaks = seq(2011, 2019, 1)) +
scale_y_continuous(
name = "Accounts",
limits = c(0, 280000),
breaks = seq(0, 280000, 50000),
expand = c(0, 0),
labels = scales::comma) +
scale_fill_manual(
values = c(
"Residential" = "#0084c1",
"Commercial" = "#e29617",
"Other" = "#fad900"),
name = "Customer Class"
) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(title = NULL))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-accounts-railbelt-html
#| fig-cap: "Number of Customer Accounts, Railbelt Region"
railbelt_customers_html <-
railbelt_customers_plot +
geom_bar_interactive(
tooltip = filtered_data$tooltip,
stat = "identity",
position = "stack"
)
girafe(code = print(railbelt_customers_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-accounts-railbelt-pdf
#| fig-cap: "Number of Customer Accounts, Railbelt Region"
railbelt_customers_pdf <-
railbelt_customers_plot +
geom_bar(stat = "identity", position = "stack")
print(railbelt_customers_pdf)
```
`r space(vspace="0em")`
::: {.content-visible when-format="pdf"}
\newpage
:::
## Rural Remote
From 2011 to 2019, the Rural Remote region saw an average yearly growth rate of `r cagr("Rural Remote", "Residential", "sales")`% for residential sales, `r cagr("Rural Remote", "Commercial", "sales")`% for commercial sales, and `r cagr("Rural Remote", "Other", "sales")`% for all other sales. Positive growth rates for the commercial and other customer classes are unique to the rural remote energy region as all other regions saw average yearly declines in sales. `r if (knitr::is_html_output())"@fig-delivered-by-class-rural-html" else if (knitr::is_latex_output()) "@fig-delivered-by-class-rural-pdf"` shows these sales in GWh for each year.
`r space(vspace="0em")`
```{r}
# Filter data
filtered_data <- regional_consumption_data %>%
filter(class != "Total" & acep_region == "Rural Remote") %>%
mutate(
class = factor(class, levels = c("Residential", "Commercial", "Other")),
tooltip = paste(
round((sales / 1000), 0), "GWh Delivered",
"<br>", class, "Customers",
"<br>Year", year
)
)
# Create plot
rural_remote_consumption_plot <-
ggplot(
filtered_data,
aes(
x = year,
y = sales / 1000,
fill = reorder(class, sales))) +
scale_x_continuous(
name = "",
breaks = seq(2011, 2019, 1)) +
scale_y_continuous(
name = "Gigawatt Hours (GWh)",
limits = c(0, 500),
breaks = seq(0, 500, 50),
expand = c(0, 0),
labels = scales::comma) +
scale_fill_manual(
values = c(
"Residential" = "#0084c1",
"Commercial" = "#e29617",
"Other" = "#fad900"),
name = "Customer Class"
) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(title = NULL))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-delivered-by-class-rural-html
#| fig-cap: "Delivered Electricity by Customer Class, Rural Remote Region"
rural_remote_consumption_html <-
rural_remote_consumption_plot +
geom_bar_interactive(
tooltip = filtered_data$tooltip,
stat = "identity",
position = "stack"
)
girafe(code = print(rural_remote_consumption_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-delivered-by-class-rural-pdf
#| fig-cap: "Delivered Electricity by Customer Class, Rural Remote Region"
rural_remote_consumption_pdf <-
rural_remote_consumption_plot +
geom_bar(stat = "identity", position = "stack")
print(rural_remote_consumption_pdf)
```
`r space()`
The trends in the number of customer accounts by class are visualized in `r if (knitr::is_html_output())"@fig-accounts-rural-html" else if (knitr::is_latex_output()) "@fig-accounts-rural-pdf"`. The average yearly growth rate in customer accounts in the Rural Remote region was `r cagr("Rural Remote", "Residential", "customers")`% for the residential class, `r cagr("Rural Remote", "Commercial", "customers")`% for the commercial class, and `r cagr("Rural Remote", "Other", "customers")`% for the other class.
`r space(vspace="0em")`
```{r}
# Filter data
filtered_data <- regional_consumption_data %>%
filter(class != "Total" & acep_region == "Rural Remote") %>%
mutate(
class = factor(class, levels = c("Residential", "Commercial", "Other")),
tooltip = paste(
comma(round((customers), 0)), "Accounts",
"<br>", class, "Class",
"<br>Year", year
)
)
# Create plot
rural_remote_customers_plot <-
ggplot(
filtered_data,
aes(
x = year,
y = customers,
fill = reorder(class, sales))) +
scale_x_continuous(
name = "",
breaks = seq(2011, 2019, 1)) +
scale_y_continuous(
name = "Customers",
limits = c(0, 40000),
breaks = seq(0, 40000, 5000),
expand = c(0, 0),
labels = scales::comma) +
scale_fill_manual(
values = c(
"Residential" = "#0084c1",
"Commercial" = "#e29617",
"Other" = "#fad900"),
name = "Customer Class"
) +
theme_electrified() +
theme(panel.grid.major.x = element_blank()) +
guides(fill = guide_legend(title = NULL))
```
```{r, eval=knitr::is_html_output(), fig.pos = "H"}
#| label: fig-accounts-rural-html
#| fig-cap: "Number of Customer Accounts, Railbelt Region"
rural_remote_customers_html <-
rural_remote_customers_plot +
geom_bar_interactive(
tooltip = filtered_data$tooltip,
stat = "identity",
position = "stack"
)
girafe(code = print(rural_remote_customers_html))
```
```{r, eval=knitr::is_latex_output(), fig.pos = "H"}
#| label: fig-accounts-rural-pdf
#| fig-cap: "Number of Customer Accounts, Rural Remote Region"
rural_remote_customers_pdf <-
rural_remote_customers_plot +
geom_bar(stat = "identity", position = "stack")
print(rural_remote_customers_pdf)
```