forked from triton-inference-server/client
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple_http_async_infer_client.py
113 lines (100 loc) · 4.82 KB
/
simple_http_async_infer_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#!/usr/bin/env python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from functools import partial
import argparse
import numpy as np
import sys
import tritonclient.http as httpclient
from tritonclient.utils import InferenceServerException
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action="store_true",
required=False,
default=False,
help='Enable verbose output')
parser.add_argument('-u',
'--url',
type=str,
required=False,
default='localhost:8000',
help='Inference server URL. Default is localhost:8000.')
FLAGS = parser.parse_args()
request_count = 2
try:
# Need to specify large enough concurrency to issue all the
# inference requests to the server in parallel.
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose, concurrency=request_count)
except Exception as e:
print("context creation failed: " + str(e))
sys.exit()
model_name = 'simple'
# Infer
inputs = []
outputs = []
inputs.append(httpclient.InferInput('INPUT0', [1, 16], "INT32"))
inputs.append(httpclient.InferInput('INPUT1', [1, 16], "INT32"))
# Create the data for the two input tensors. Initialize the first
# to unique integers and the second to all ones.
input0_data = np.arange(start=0, stop=16, dtype=np.int32)
input0_data = np.expand_dims(input0_data, axis=0)
input1_data = np.ones(shape=(1, 16), dtype=np.int32)
# Initialize the data
inputs[0].set_data_from_numpy(input0_data, binary_data=True)
inputs[1].set_data_from_numpy(input1_data, binary_data=True)
outputs.append(httpclient.InferRequestedOutput('OUTPUT0', binary_data=True))
outputs.append(httpclient.InferRequestedOutput('OUTPUT1', binary_data=True))
async_requests = []
for i in range(request_count):
# Asynchronous inference call.
async_requests.append(
triton_client.async_infer(model_name=model_name,
inputs=inputs,
outputs=outputs))
for async_request in async_requests:
# Get the result from the initiated asynchronous inference request.
# Note the call will block till the server responds.
result = async_request.get_result()
print(result.get_response())
# Validate the results by comparing with precomputed values.
output0_data = result.as_numpy('OUTPUT0')
output1_data = result.as_numpy('OUTPUT1')
for i in range(16):
print(
str(input0_data[0][i]) + " + " + str(input1_data[0][i]) +
" = " + str(output0_data[0][i]))
print(
str(input0_data[0][i]) + " - " + str(input1_data[0][i]) +
" = " + str(output1_data[0][i]))
if (input0_data[0][i] + input1_data[0][i]) != output0_data[0][i]:
print("async infer error: incorrect sum")
sys.exit(1)
if (input0_data[0][i] - input1_data[0][i]) != output1_data[0][i]:
print("async infer error: incorrect difference")
sys.exit(1)