forked from triton-inference-server/client
-
Notifications
You must be signed in to change notification settings - Fork 0
/
grpc_explicit_int_content_client.py
135 lines (117 loc) · 5.29 KB
/
grpc_explicit_int_content_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import numpy as np
import grpc
from tritonclient.grpc import service_pb2, service_pb2_grpc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action="store_true",
required=False,
default=False,
help='Enable verbose output')
parser.add_argument('-u',
'--url',
type=str,
required=False,
default='localhost:8001',
help='Inference server URL. Default is localhost:8001.')
FLAGS = parser.parse_args()
# We use a simple model that takes 2 input tensors of 16 integers
# each and returns 2 output tensors of 16 integers each. One
# output tensor is the element-wise sum of the inputs and one
# output is the element-wise difference.
model_name = "simple"
model_version = ""
batch_size = 1
# Create gRPC stub for communicating with the server
channel = grpc.insecure_channel(FLAGS.url)
grpc_stub = service_pb2_grpc.GRPCInferenceServiceStub(channel)
# Generate the request
request = service_pb2.ModelInferRequest()
request.model_name = model_name
request.model_version = model_version
# Input data
input0_data = [i for i in range(16)]
input1_data = [1 for i in range(16)]
# Populate the inputs in inference request
input0 = service_pb2.ModelInferRequest().InferInputTensor()
input0.name = "INPUT0"
input0.datatype = "INT32"
input0.shape.extend([1, 16])
input0.contents.int_contents[:] = input0_data
input1 = service_pb2.ModelInferRequest().InferInputTensor()
input1.name = "INPUT1"
input1.datatype = "INT32"
input1.shape.extend([1, 16])
input1.contents.int_contents[:] = input1_data
request.inputs.extend([input0, input1])
# Populate the outputs in the inference request
output0 = service_pb2.ModelInferRequest().InferRequestedOutputTensor()
output0.name = "OUTPUT0"
output1 = service_pb2.ModelInferRequest().InferRequestedOutputTensor()
output1.name = "OUTPUT1"
request.outputs.extend([output0, output1])
response = grpc_stub.ModelInfer(request)
output_results = []
index = 0
for output in response.outputs:
shape = []
for value in output.shape:
shape.append(value)
output_results.append(
np.frombuffer(response.raw_output_contents[index], dtype=np.int32))
output_results[-1] = np.resize(output_results[-1], shape)
index += 1
if len(output_results) != 2:
print("expected two output results")
sys.exit(1)
for i in range(16):
print(
str(input0_data[i]) + " + " + str(input1_data[i]) + " = " +
str(output_results[0][0][i]))
print(
str(input0_data[i]) + " - " + str(input1_data[i]) + " = " +
str(output_results[1][0][i]))
if (input0_data[i] + input1_data[i]) != output_results[0][0][i]:
print("sync infer error: incorrect sum")
sys.exit(1)
if (input0_data[i] - input1_data[i]) != output_results[1][0][i]:
print("sync infer error: incorrect difference")
sys.exit(1)
# Populating additional content field should generate an error
request.raw_input_contents.extend([np.array(input0_data[0:8]).tobytes()])
request.inputs[0].contents.int_contents[:] = input0_data[8:]
try:
response = grpc_stub.ModelInfer(request)
except Exception as e:
if "contents field must not be specified when using " \
"raw_input_contents for 'INPUT0' for model 'simple'" \
in e.__str__():
print('PASS: explicit int')