-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallel_tasks.c
422 lines (344 loc) · 11.5 KB
/
parallel_tasks.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#include <assert.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/times.h>
#include <sys/time.h>
#include <time.h>
#include <mpi.h>
#define N 512
typedef struct {float r; float i;} complex;
static complex ctmp;
#define C_SWAP(a,b) {ctmp=(a);(a)=(b);(b)=ctmp;}
void print_array(complex *array)
{
int row, col;
if (N < 17)
{
printf("\nA =\n\t");
for (row = 0; row < N; row++)
{
for (col = 0; col < N; col++)
{
printf("%5.2f%s", array[row*N+col].r, (col < N - 1) ? ", " : ";\n\t");
}
}
printf("\n");
}
}
void readFile(char fileName[15], complex *array){
FILE *fp = fopen(fileName, "r");
int i, j, result;
for (i=0;i<N;i++){
for (j=0;j<N;j++){
result = fscanf(fp,"%g",&array[i*N+j].r);
array[i*N+j].i = 0.00;
}
}
fclose(fp);
}
void writeToFile(char fileName[15], complex *array){
FILE *fp = fopen(fileName, "w");
int i, j;
for (i=0;i<N;i++) {
for (j=0;j<N;j++){
fprintf(fp," %.7e",array[i*N+j].r);
}
fprintf(fp,"\n");
}
fclose(fp);
}
void transpose(complex *r, int n ) {
for ( int i = 0; i < (n-1); i++ ) {
for ( int j =i+1; j < n; j++ ) {
C_SWAP(r[i*n+j],r[j*n+i]);
}
}
}
void c_fft1d(complex *r, int n, int isign)
{
int m,i,i1,j,k,i2,l,l1,l2;
float c1,c2,z;
complex t, u;
if (isign == 0) return;
/* Do the bit reversal */
i2 = n >> 1;
j = 0;
for (i=0;i<n/2;i+=2) {
if (i < j)
C_SWAP(r[i], r[j]);
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* m = (int) log2((double)n); */
for (i=n,m=0; i>1; m++,i/=2);
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
u.r = 1.0;
u.i = 0.0;
for (j=0;j<l1;j++) {
for (i=j;i<n;i+=l2) {
i1 = i + l1;
/* t = u * r[i1] */
t.r = u.r * r[i1].r - u.i * r[i1].i;
t.i = u.r * r[i1].i + u.i * r[i1].r;
/* r[i1] = r[i] - t */
r[i1].r = r[i].r - t.r;
r[i1].i = r[i].i - t.i;
/* r[i] = r[i] + t */
r[i].r += t.r;
r[i].i += t.i;
}
z = u.r * c1 - u.i * c2;
u.i = u.r * c2 + u.i * c1;
u.r = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (isign == -1) /* FWD FFT */
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for inverse transform */
if (isign == 1) { /* IFFT*/
for (i=0;i<n;i++) {
r[i].r /= n;
r[i].i /= n;
}
}
}
int main(int argc, char **argv){
/* Timing variables */
struct timeval etstart, etstop; /* Elapsed times using gettimeofday() */
struct timezone tzdummy;
clock_t etstart2, etstop2; /* Elapsed times using times() */
unsigned long long usecstart, usecstop;
struct tms cputstart, cputstop; /* CPU times for my processes */
double starttime = 0.0;
double endtime = 0.0;
int i, j, index, div;
int world_rank, p, source = 0, dest, x;
int tag = 1;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_size(MPI_COMM_WORLD, &p);
complex *A, *B, *C;
A = (complex *)malloc(sizeof(complex)*N*N);
B = (complex *)malloc(sizeof(complex)*N*N);
C = (complex *)malloc(sizeof(complex)*N*N);
MPI_Datatype complexStruct;
int blockcounts[2] = { 1, 1 };
MPI_Aint indices[2] = { 0, sizeof(float) };
MPI_Datatype types[2] = { MPI_FLOAT, MPI_FLOAT };
MPI_Type_struct( 2, blockcounts, indices, types, &complexStruct );
MPI_Type_commit( &complexStruct );
if ( world_rank == 0 ) {
char inputA[15] = "sample/1_im1";
char inputB[15] = "sample/1_im2";
readFile(inputA, A);
readFile(inputB, B);
/* Start Clock */
printf("\nStarting clock.\n");
gettimeofday(&etstart, &tzdummy);
etstart2 = times(&cputstart);
starttime = MPI_Wtime();
}
/* Distribute Data for Step 1 */
int color = world_rank / 2;
MPI_Comm row_comm;
MPI_Comm_split(MPI_COMM_WORLD, color, world_rank, &row_comm);
int row_rank, row_size;
MPI_Comm_rank(row_comm, &row_rank);
MPI_Comm_size(row_comm, &row_size);
div = N/row_size;
complex *subA, *subB, *subC, *sub;
sub = (complex *)malloc(sizeof(complex)*N*div);
subA = (complex *)malloc(sizeof(complex)*N*div);
subB = (complex *)malloc(sizeof(complex)*N*div);
// subC = (complex *)malloc(sizeof(complex)*N*div);
if ( world_rank == 0 ) {
MPI_Send(&B[0], N*N, complexStruct, 2, tag, MPI_COMM_WORLD);
} else if( world_rank == 2 ) {
MPI_Recv(&B[0], N*N, complexStruct, 0, tag, MPI_COMM_WORLD, &status);
}
if ( color == 0 ) {
MPI_Scatter(&A[0], N*div, complexStruct, &sub[0], N*div, complexStruct, 0, row_comm);
}
if ( color == 1 ) {
MPI_Scatter(&B[0], N*div, complexStruct, &sub[0], N*div, complexStruct, 0, row_comm);
}
MPI_Barrier(MPI_COMM_WORLD);
/*------------------------------*/
/* Step 1.a - Perform 1D FFT on A and B */
if ( color == 0 || color == 1 ) {
for( i=0; i<div; i++){
c_fft1d(&sub[i*N], N, -1);
}
}
MPI_Barrier(row_comm);
/*------------------------------*/
/* Step 1.b - Collect Data */
if ( color == 0 ) {
MPI_Gather(&sub[0], N*div, complexStruct, &A[0], N*div, complexStruct, 0, row_comm);
}
if ( color == 1 ) {
MPI_Gather(&sub[0], N*div, complexStruct, &B[0], N*div, complexStruct, 0, row_comm);
}
/*------------------------------*/
/* Step 1.c - Transpose */
if ( color == 0 && row_rank == 0 ) {
transpose(A, N);
}
if ( color == 1 && row_rank == 0 ) {
transpose(B, N);
}
/*------------------------------*/
/* Step 1.d - Distribute Data for Step 1 after transpose*/
if ( color == 0 ) {
MPI_Scatter(&A[0], N*div, complexStruct, &sub[0], N*div, complexStruct, 0, row_comm);
}
if ( color == 1 ) {
MPI_Scatter(&B[0], N*div, complexStruct, &sub[0], N*div, complexStruct, 0, row_comm);
}
/*------------------------------*/
/* Step 1.e - Perform 1D FFT on A and B after transpose */
for( i=0; i<div; i++){
c_fft1d(&sub[i*N], N, -1);
}
/*------------------------------*/
/* Step 1.f - Collect Data */
if ( color == 0 ) {
MPI_Gather(&sub[0], N*div, complexStruct, &A[0], N*div, complexStruct, 0, row_comm);
}
if ( color == 1 ) {
MPI_Gather(&sub[0], N*div, complexStruct, &B[0], N*div, complexStruct, 0, row_comm);
}
/*------------------------------*/
/* Step 1.g - Distribute Data for Step 1 after transpose*/
MPI_Barrier(MPI_COMM_WORLD);
if ( world_rank == 0 ) {
MPI_Send(&A[0], N*N, complexStruct, 4, tag, MPI_COMM_WORLD);
} else if( world_rank == 2 ) {
MPI_Send(&B[0], N*N, complexStruct, 4, tag, MPI_COMM_WORLD);
} else if ( world_rank == 4 ) {
MPI_Recv(&A[0], N*N, complexStruct, 0, tag, MPI_COMM_WORLD, &status);
MPI_Recv(&B[0], N*N, complexStruct, 2, tag, MPI_COMM_WORLD, &status);
}
if ( color == 2 ) {
MPI_Scatter(&A[0], N*div, complexStruct, &subA[0], N*div, complexStruct, 0, row_comm);
MPI_Scatter(&B[0], N*div, complexStruct, &subB[0], N*div, complexStruct, 0, row_comm);
}
/*------------------------------*/
/* Step 2.b - Matrix Mutipication */
if ( color == 2 ) {
for (i = 0; i < div ; i++) {
for(j = 0; j < N ; j++) {
index = i*N+j;
sub[index].r = (subA[index].r * subB[index].r) - (subA[index].i * subB[index].i);
sub[index].i = (subA[index].r * subB[index].i) + (subA[index].i * subB[index].r);
}
}
}
/*------------------------------*/
/* Step 2.c - Gather and send data*/
MPI_Barrier(MPI_COMM_WORLD);
if ( color == 2 ) {
MPI_Gather(&sub[0], N*div, complexStruct, &C[0], N*div, complexStruct, 0, row_comm);
}
if ( world_rank == 4 ) {
MPI_Send(&C[0], N*N, complexStruct, 6, tag, MPI_COMM_WORLD);
} else if (world_rank == 6) {
MPI_Recv(&C[0], N*N, complexStruct, 4, tag, MPI_COMM_WORLD, &status);
}
if ( color == 3 ) {
MPI_Scatter(&C[0], N*div, complexStruct, &sub[0], N*div, complexStruct, 0, row_comm);
}
/*------------------------------*/
/* Step 3.a - Perform 1D FFT on C */
if ( color == 3 ) {
for( i=0; i<div; i++){
c_fft1d(&sub[i*N], N, 1);
}
}
/*------------------------------*/
/* Step 3.b - Collect Data */
if ( color == 3 ) {
MPI_Gather(&sub[0], N*div, complexStruct, &C[0], N*div, complexStruct, 0, row_comm);
}
/*------------------------------*/
/* Step 3.c - Transpose */
if (world_rank == 6) {
transpose(C, N);
}
/*------------------------------*/
/* Step 3.d - Distribute Data for Step 1 after transpose*/
if ( color == 3 ) {
MPI_Scatter(&C[0], N*div, complexStruct, &sub[0], N*div, complexStruct, 0, row_comm);
}
/*------------------------------*/
/* Step 3.e - Perform 1D FFT on C after transpose */
if ( color == 3 ) {
for( i=0; i<div; i++){
c_fft1d(&sub[i*N], N, 1);
}
}
/*------------------------------*/
/* Collect Result Data */
MPI_Barrier(MPI_COMM_WORLD);
if ( color == 3 ) {
MPI_Gather(&sub[0], N*div, complexStruct, &C[0], N*div, complexStruct, 0, row_comm);
}
if ( world_rank == 0 ) {
MPI_Recv(&C[0], N*N, complexStruct, 6, tag, MPI_COMM_WORLD, &status);
} else if (world_rank == 6) {
MPI_Send(&C[0], N*N, complexStruct, 0, tag, MPI_COMM_WORLD);
}
/*------------------------------*/
if (world_rank == 0) {
/* Stop Clock */
gettimeofday(&etstop, &tzdummy);
etstop2 = times(&cputstop);
endtime = MPI_Wtime();
printf("Stopped clock.\n");
usecstart = (unsigned long long)etstart.tv_sec * 1000000 + etstart.tv_usec;
usecstop = (unsigned long long)etstop.tv_sec * 1000000 + etstop.tv_usec;
char output[15] = "out_test";
writeToFile(output, C);
/* Display timing results */
printf("\nMPI_Wtime = %f s.\n", (endtime - starttime));
/* Display timing results */
printf("\nElapsed time = %g s.\n",
(float)(usecstop - usecstart)/(float)1000000);
printf("(CPU times are accurate to the nearest %g ms)\n",
1.0/(float)CLOCKS_PER_SEC * 1000.0);
printf("My total CPU time for parent = %g ms.\n",
(float)( (cputstop.tms_utime + cputstop.tms_stime) -
(cputstart.tms_utime + cputstart.tms_stime) ) /
(float)CLOCKS_PER_SEC * 1000);
printf("My system CPU time for parent = %g ms.\n",
(float)(cputstop.tms_stime - cputstart.tms_stime) /
(float)CLOCKS_PER_SEC * 1000);
printf("My total CPU time for child processes = %g ms.\n",
(float)( (cputstop.tms_cutime + cputstop.tms_cstime) -
(cputstart.tms_cutime + cputstart.tms_cstime) ) /
(float)CLOCKS_PER_SEC * 1000);
/* Contrary to the man pages, this appears not to include the parent */
printf("--------------------------------------------\n");
}
MPI_Finalize();
free(A);
free(B);
free(C);
return 0;
}