-
Notifications
You must be signed in to change notification settings - Fork 2
/
driver_cell.py
102 lines (81 loc) · 3.14 KB
/
driver_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from headers_constants import *
from Cell_cib import *
from Cell_tSZ import *
from Cell_CIBxtSZ import *
from plot_cell import *
from input_var import *
"""
Although we are calculating the halo mass function, halo bias, and the
Fourier transform of the NFW profile here, the computation can be speeded up
by precomputing them before and storing them in a file and then reading
them here.
"""
Planck = {'name': 'Planck',
'do_cib': 1, 'do_tsz': 1, 'do_cibxtsz': 1,
'freq_cib': [100., 143., 217., 353., 545., 857.],
'cc': np.array([1.076, 1.017, 1.119, 1.097, 1.068, 0.995, 0.960]),
'cc_cibmean': np.array([1.076, 1.017, 1.119, 1.097, 1.068, 0.995, 0.960]),
'freq_cibmean': np.array([100., 143., 217., 353., 545., 857.]),
'fc': np.ones(7),
}
Herschel = {'name': 'Herschel-spire',
'do_cib': 1, 'do_tsz': 0, 'do_cibxtsz': 0,
'freq_cib': [600., 857., 1200.],
'cc': np.array([0.974, 0.989, 0.988]),
'cc_cibmean': np.array([0.974, 0.989, 0.988]),
'freq_cibmean': np.array([600., 857., 1200.]),
'fc': np.ones(3),
}
CCAT = {'name': 'CCAT-p',
'do_cib': 1, 'do_tsz': 0, 'do_cibxtsz': 0,
'freq_cib': [220., 280., 350., 410., 850.],
'cc': np.ones(5),
'cc_cibmean': np.ones(5),
'freq_cibmean': np.array([220., 280., 350., 410., 850.]),
'fc': np.ones(5),
}
exp = Planck
# ############### planck cib data #########################
ell = np.linspace(2, 1e4, 5000)
redshifts = np.loadtxt('data_files/redshifts.txt')
z1 = np.linspace(min(redshifts), max(redshifts), 200)
z = redshifts # z1 # redshifts
logmass = np.arange(6, 15.005, 0.1)
mass = 10**logmass
driver = data_var(exp, mass, z, ell)
if exp['do_cib'] == 1:
clcib = cl_cib(driver)
cl1h_cib = clcib.onehalo_int()
cl2h_cib = clcib.twohalo_int()
# plotting the CIB power spectra for freq[nu1]xfreq[nu2] GHz
# fam = "serif"
# plt.rcParams["font.family"] = fam
freq = ['100', '143', '217', '353', '545', '857']
nu1, nu2 = 1, 1
plot_Cell(ell, cl1h_cib, cl2h_cib, nu1, nu2, freq, 'CIB')
# plt.figure()
# ############################### tSZ params ############################
if exp['do_tsz'] == 1:
cltsz = cl_tsz(driver)
cl1h_tsz = cltsz.C_ell_1h()
cl2h_tsz = cltsz.C_ell_2h()
# self.B = 1.41
# plotting the tSZ power spectra for freq[nu1]xfreq[nu2] GHz
freq = ['100', '143', '217', '353', '545', '857']
nu1, nu2 = 0, 0
plot_Cell(ell, cl1h_tsz, cl2h_tsz, nu1, nu2, freq, 'tSZ')
# print (cl1h_tsz[0, 0])
# print (cl2h_tsz[0, 0])
# ################################ cib x tSZ ########################
if exp['do_cibxtsz'] == 1:
# """
cib_cls = cl_cib(driver)
tsz_cls = cl_tsz(driver)
cibtsz = cl_cibxtsz(cib_cls, tsz_cls)
cl1h_cibtsz = cibtsz.onehalo() # *Kcmb_MJy*1e6
cl2h_cibtsz = cibtsz.twohalo()
# plotting the CIBxtSZ power spectra for freq[nu1]xfreq[nu2] GHz
freq = ['100', '143', '217', '353', '545', '857']
nu1, nu2 = 0, 0
plot_Cell(ell, cl1h_cibtsz, cl2h_cibtsz, nu1, nu2, freq, 'CIB x tSZ')
# """