-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
140 lines (101 loc) · 5.53 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve
from sklearn.metrics import precision_score, recall_score
def main():
st.title("Binary Classification Web App")
st.sidebar.title("Binary Classification Web App")
st.markdown("Are your mashrooms edible or poisonous ? 🍄")
st.sidebar.markdown("Are your mashrooms edible or poisonous ? 🍄")
@st.cache(persist=True)
def load_data():
data = pd.read_csv("mushrooms.csv")
label = LabelEncoder()
for col in data.columns:
data[col] = label.fit_transform(data[col])
return data
@st.cache(persist=True)
def split(df):
x = df.drop(columns=['type'])
y = df.type
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size= 0.3, random_state=0)
return x_train, x_test, y_train, y_test
def plot_metrics(metrics_list):
if 'Confusion Matrix' in metrics_list:
st.subheader("Confusion Matrix")
plot_confusion_matrix(model, x_test,y_test, display_labels=class_names)
st.pyplot()
if 'ROC Curve' in metrics_list:
st.subheader("ROC Curve")
plot_roc_curve(model, x_test,y_test)
st.pyplot()
if 'Precision Recall Curve' in metrics_list:
st.subheader("Precision Recall Curve")
plot_precision_recall_curve(model, x_test,y_test)
st.pyplot()
df = load_data()
x_train, x_test, y_train, y_test = split(df)
class_names = ['edible', 'poisonous']
st.sidebar.subheader("Choose Classifier")
classifier = st.sidebar.selectbox("Classifier",("Support Vector Machine (SVM)", "Logistic Regression", "Random Forest"))
if classifier == 'Support Vector Machine (SVM)':
st.sidebar.subheader("Model Hyperparameters ")
C = st.sidebar.number_input("C (Regularization parameter)", 0.01, 10.0, step=0.01, key ='C')
kernel = st.sidebar.radio("Kernel", ("rbf", "linear"), key='kernel')
gamma = st.sidebar.radio("Gamma (kernel coefficient)", ("scale", "auto"), key = 'gamma')
metrics = st.sidebar.multiselect("What metrics to plot ?", ("Confusion Matrix",'ROC Curve', 'Precision Recall Curve'))
if st.sidebar.button("classify",key ='classify'):
st.subheader("Support Vector Machine (SVM) Results !")
model = SVC(C=C, kernel=kernel, gamma=gamma)
model.fit(x_train,y_train)
accuracy = model.score(x_test,y_test)
y_pred = model.predict(x_test)
st.write("Accuracy: ", accuracy.round(3))
st.write("Precision: ", precision_score(y_test, y_pred, labels=class_names).round(3))
st.write("Recall: ", recall_score(y_test, y_pred, labels=class_names).round(3))
plot_metrics(metrics)
if classifier == 'Logistic Regression':
st.sidebar.subheader("Model Hyperparameters ")
C = st.sidebar.number_input("C (Regularization parameter)", 0.01, 10.0, step=0.01, key ='C')
max_iter = st.sidebar.slider("Maximum iterations ", 100, 500, key ='max_ter')
metrics = st.sidebar.multiselect("What metrics to plot ?", ("Confusion Matrix",'ROC Curve', 'Precision Recall Curve'))
if st.sidebar.button("classify",key ='classify'):
st.subheader("Logistic Regression Results !")
model = LogisticRegression(C=C, max_iter=max_iter)
model.fit(x_train,y_train)
accuracy = model.score(x_test,y_test)
y_pred = model.predict(x_test)
st.write("Accuracy: ", accuracy.round(3))
st.write("Precision: ", precision_score(y_test, y_pred, labels=class_names).round(3))
st.write("Recall: ", recall_score(y_test, y_pred, labels=class_names).round(3))
plot_metrics(metrics)
if classifier == 'Random Forest':
st.sidebar.subheader("Model Hyperparameters ")
n_estimators = st.sidebar.number_input("The Number Of trees in the forest", 100, 5000, step=10, key ='n_estimators')
bootstrap = st.sidebar.radio("Bootstrap sample when building trees",('True', 'False'), key = 'bootstrap')
max_depth = st.sidebar.number_input("The Maximum depth of the Tree", 1, 20, step=1, key ='max_depth')
metrics = st.sidebar.multiselect("What metrics to plot ?", ("Confusion Matrix",'ROC Curve', 'Precision Recall Curve'))
if st.sidebar.button("classify",key ='classify'):
st.subheader("Random Forest Results !")
model = RandomForestClassifier(n_estimators=n_estimators, bootstrap=bootstrap, max_depth=max_depth, n_jobs=-1)
model.fit(x_train,y_train)
accuracy = model.score(x_test,y_test)
y_pred = model.predict(x_test)
st.write("Accuracy: ", accuracy.round(3))
st.write("Precision: ", precision_score(y_test, y_pred, labels=class_names).round(3))
st.write("Recall: ", recall_score(y_test, y_pred, labels=class_names).round(3))
plot_metrics(metrics)
if st.sidebar.checkbox("Show Raw Data", False):
st.subheader("Mushroom Data set (Classification)")
st.write(df)
if __name__ == '__main__':
main()